

#### Experimental design for multi-level data: Improving our approach to power analysis using Monte Carlo simulation-based parameter recovery estimation

Chadwick, S.<sup>1</sup>, & Davies, R.<sup>1</sup> International Multilevel Conference 2019 <sup>1</sup>Department of Psychology, Lancaster University, United Kingdom

# What's the point of research?



My research question:

"Are ratings of comprehension predictive of assessed comprehension?"

"Will my study answer my research question?' is the most fundamental question a researcher can ask when designing a study"

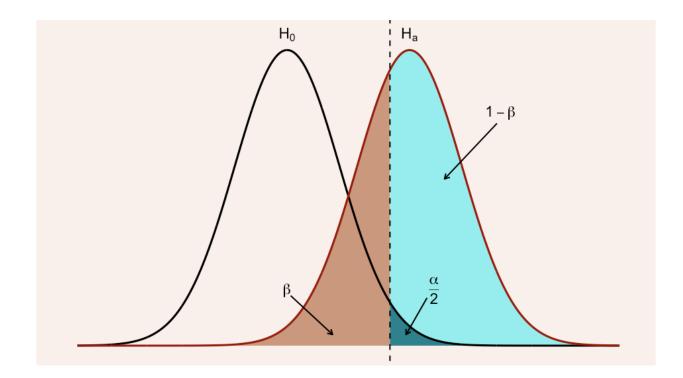
(Johnson et al., 2015, p. 133)





Question:

- Will my study be adequately powered to detect an effect of interest?


Answer:

- Do power analysis

### What is power analysis?



Power = P(correctly reject H0)



"Do power analysis"



1) Formulaic / analytic method

2) Simulation-based method

## Formulaic / analytic approach



| 5 4                                | Means: Difference between two independent means (two groups) |                          |                                                                                                         |                      |
|------------------------------------|--------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------|----------------------|
| o <mark>f power</mark><br>ori: Com | Software                                                     | Platform                 | URL <sup>a</sup>                                                                                        | Freely<br>available? |
| Paramete                           | Stand-alone programs                                         |                          |                                                                                                         |                      |
| Paramet                            | G*Power                                                      | Windows and macOS        | http://www.gpower.hhu.de                                                                                | Yes                  |
|                                    | PS                                                           | Windows                  | http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize                                              | Yes                  |
|                                    | PASS                                                         | Windows                  | https://www.ncss.com/software/pass                                                                      | No                   |
| nine =>                            | nQuery                                                       | Windows                  | https://www.statsols.com/nquery-sample-size-and-power-calcula<br>tion-for-successful-clinical-trials    | No                   |
|                                    | R <sup>b</sup> packages                                      |                          |                                                                                                         |                      |
| P                                  | pwr                                                          | Windows, macOS and Linux | https://cran.r-project.org/web/packages/pwr                                                             | Yes                  |
|                                    | TrialSize                                                    | Windows, macOS and Linux | https://cran.r-project.org/web/packages/TrialSize                                                       | Yes                  |
| Alle                               | Power UpR <sup>c</sup>                                       | Windows, macOS and Linux | https://cran.r-project.org/web/packages/PowerUpR                                                        | Yes                  |
|                                    | powerSurvEpi                                                 | Windows, macOS and Linux | https://CRAN.R-project.org/package=powerSurvEpi                                                         | Yes                  |
|                                    | SAS                                                          |                          |                                                                                                         |                      |
|                                    | PROC POWER                                                   | Windows and Linux        | https://support.sas.com/documentation/cdl/en/statug/63033/<br>HTML/default/viewer.htm#power_toc.htm     | No                   |
|                                    | SPSS                                                         |                          |                                                                                                         |                      |
|                                    | SamplePower                                                  | Windows                  | https://www-01.ibm.com/marketing/iwm/iwmdocs/tnd/data/web/<br>en_US/trialprograms/U741655136057W80.html | No                   |
|                                    | Stata                                                        |                          |                                                                                                         |                      |
|                                    | power                                                        | Windows, macOS and Linux | https://www.stata.com/features/power-and-sample-size/                                                   | No                   |
|                                    | Microsoft Excel                                              |                          |                                                                                                         |                      |
|                                    | P ower Up <sup>c</sup>                                       |                          | http://www.causalevaluation.org/power-analysis.html                                                     | Yes <sup>d</sup>     |
|                                    | Specialist simulation software                               |                          |                                                                                                         |                      |
|                                    | IcebergSim                                                   | Windows                  | http://icebergsim.software.informer.com/versions/                                                       | Yes                  |
|                                    | FACTS                                                        | Windows                  | https://www.berryconsultants.com/software/                                                              | No                   |
|                                    | Clinical trial simulation                                    | Windows and Linux        | http://www.biopharmnet.com/innovation/trial_simulation/cts1.php                                         | Yes <sup>e</sup>     |

#### (Hickey et al., 2018, Table 3)



"advances [in specialist modelling techniques] have not been matched by the development of analytic formulae for sample size calculations under such models"

(Landau & Stahl, 2013, p. 325)

Off-the-shelf formula assumptions are rarely met

Bespoke closed-form equations can be designed, but can be difficult to define and inflexible





Simulation-based power analyses can handle any design

Simulation-based power analyses can handle any data-generating mechanism

Separates the data-generating model from the analytic model (Landau & Stahl, 2013)

## In 'n' steps or less



- 1. Define the data-generating mechanism
- 2. Simulate many datasets
- 3. Perform an analysis on each dataset
- 4. Calculate performance

(Arnold et al., 2011; Johnson et al., 2015; Kontopantelis et al., 2016; Landau & Stahl, 2013)



# 1. Define the data-generating mechanism

- Outcome distribution
- Sources of variance
- Covariate distributions
- Effect distributions



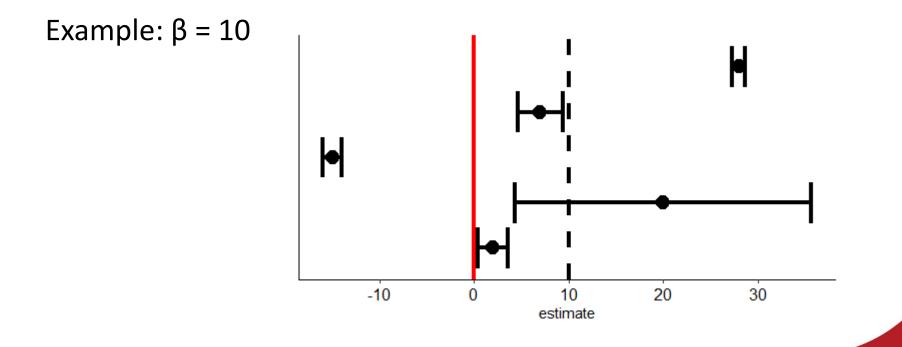
# Making assumptions of the generative model

What's sensible is defensible:

A plausible range of parameter values should, with careful consideration and transparent justification, be assumed based on knowledge of the topic and study design.

# 2-4. Simulation software options




SIMR (R; Green & MacLeod, 2016) MLPowSim (MLwiN; Browne, Golalizadeh, & Parker, 2009) POWERSIM (Stata; Luedicke, 2013) Idpower (Stata; Kontopantelis, 2018)

### Power analysis is flawed



"a narrow emphasis on statistical significance is placed as the primary focus of study design"

(Gelman & Carlin, 2014, p. 641)







Conventional power (NHST) is one form of power, and power analysis can be thought of more broadly, in terms of different goals.

(Gelman & Carlin, 2014; Hickey et al., 2018; Johnson et al., 2015; Kruschke, 2014; Landau & Stahl; 2013)

## Reframe the question



Question:

- Will my study be adequately powered to detect an effect of interest?

- Will my study be adequately designed to accurately recover an effect of interest?

Answer:

- Do power analysis

- Do parameter recovery analysis



# "Do parameter recovery analysis"

- 1. Define the data-generating mechanism
- 2. Simulate many datasets
- 3. Perform an analysis on each dataset
- 4. Calculate performance<sup>1</sup>

#### <sup>1</sup> in a more informative way





Two types of precision:

- 1. Estimate
- 2. Uncertainty

Parameter is recovered if:

The estimate is within a specified range <u>and</u> the associated uncertainty is within a specified range

#### Estimate precision



E.g. Estimate precision of  $\beta$  +/- 25%

Where  $\boldsymbol{\beta}$  is the effect of interest

β = 10

 $7.5 \geq \widehat{\beta} \leq 12.5$ 



## **Frequentist error precision**

E.g. Error precision of  ${\sf SE}_{\hat{\beta}} \leq 1.5$ 

Where  $\text{SE}_{\hat{\beta}}$  is the estimated standard error associated with  $\hat{\beta}$ 

95% CI = 
$$\hat{\beta}$$
 +/- SE <sub>$\hat{\beta}$</sub>  \*1.96

$$\hat{\beta}$$
 = 7.5, 95% CI = [4.56, 10.44]  
 $\hat{\beta}$  = 10, 95% CI = [7.06, 12.94]  
 $\hat{\beta}$  = 12.5, 95% CI = [9.56, 15.44]

### **Bayesian error precision**



E.g. Error precision of  $\hat{\beta}$  +/- 3...

Contained within the credible intervals or posterior HDI

95% 
$$CI_{\hat{\beta}} = [\hat{\beta} - 3, \hat{\beta} + 3]$$
  
80%  $HDI_{\hat{\beta}} = [\hat{\beta} - 3, \hat{\beta} + 3]$ 

## Example: My study



1. Define the data-generating mechanism  $Y_{ijkl} = \text{Bernoulli}(\Theta_{ijkl})$   $\Theta_{ijkl} = \beta_{0ijkl} + \beta_{1i}x_{1i} + \beta_{2i}x_{2i} + \beta_{3i}x_{3i} + \beta_{4i}x_{4i}$ 

 $x_1$  = Comprehension abilityi = participant $x_2$  = Vocabularyj = text $x_3$  = Topic familiarityk = question $x_4$  = Rated comprehensionl = observation

$$\begin{split} \beta_{0ijkl} &= \Upsilon_0 + u_{0il} + u_{0ij} + u_{0ik} \\ u_{0il} &= N(u_{0i}, \sigma^2) \\ u_{0i} &= N(0, \sigma^2) \end{split}$$

...

$$\begin{aligned} \beta_{1i} &= \mathsf{N}(\mu,\,\sigma^2) \\ \beta_{2i} &= \mathsf{N}(\mu,\,\sigma^2) \end{aligned}$$

#### Example: My study



2. Simulate many datasets

Texts: 5, 10, 15 Participants: 50-500





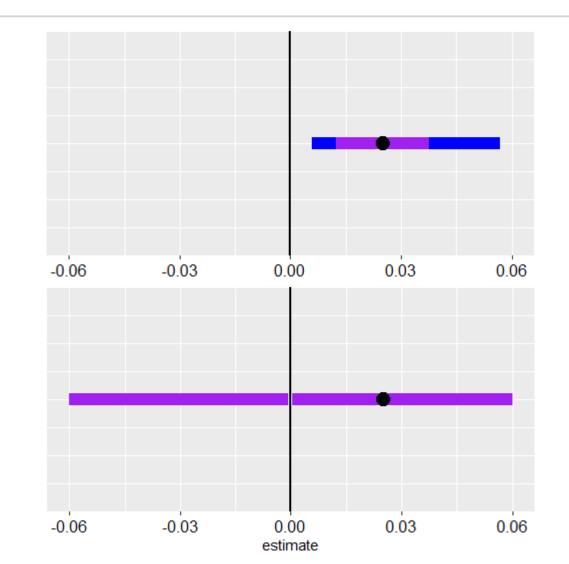
3. Perform an analysis on the datasets

clmm(count ~ (1|participant) + (1|text) + comprehension.ability + vocabulary.score + topic.familiarity + rated.comprehension)



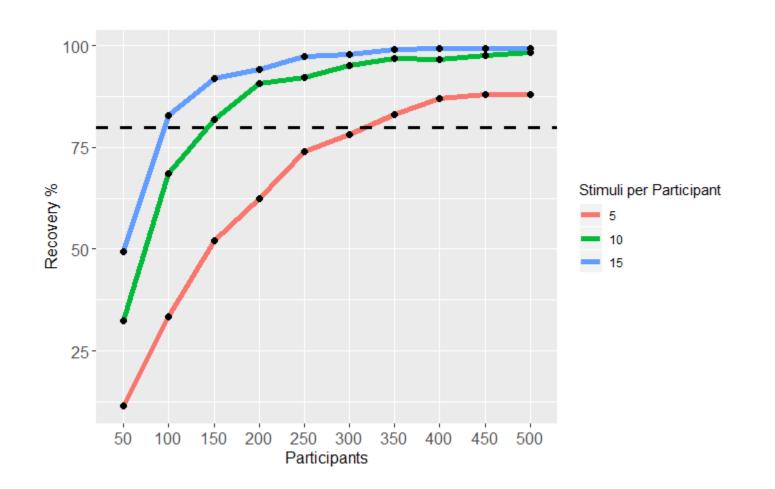
### Example: My study

4. Calculate performance


Estimate precision: 50% of  $\beta$  $0.5\beta \ge \hat{\beta} \le 1.5\beta$ 

#### Error precision: 50% of $\hat{\beta}$ 95% UCI<sub> $\hat{\beta}$ </sub> $\geq$ 0.5\*0.5 $\beta$ and 95% LCI<sub> $\hat{\beta}$ </sub> $\leq$ 0.5\*1.5 $\beta$




#### Example: My study





#### **Example: Result**









Assumptions on parameters

Choosing parameter estimates is difficult

Time

Convergence

## Available code



#### R package on GitHub – chaddlewick/spr (under development)

```
observedvariables = as.list(c(participant = "rep(1:20, each = 40)",
            griscore = "rnorm(participant, 10, 2)",
            hlvascore = "rnorm(participant, 8, 0.5)",
            texts = "rep(1:10, times = 20, each = 4)",
            question = "rep(1:800)"))
effectvariables = as.list(c(intercept = "0.15",
            bparticipant = "rnorm(participant, mean=0, sd=0.4)",
            bgriscore = "rnorm(participant, 0.025, 0.001)",
            bhlvascore = "rnorm(participant, 0.02, 0.001)",
            btexts = "rnorm(texts, 0, 0.02)",
            bquestion = "rnorm(question, 0, 0.015)"))
outcomegeneration = as.list(c(outcome= "rbinom(observation, 1, dataset$py)",
            py = "dataset$intercept + dataset$bparticipant + dataset$bgriscore*dataset$griscore +
            dataset$bhlvascore*dataset$hlvascore + dataset$btexts + dataset$bquestion"))
analyticmodel = "brm(outcome \sim (1|participant) + (1|texts) + griscore + hlvascore, data=dataset, family =
            bernoulli(), cores = 2)"
```

### **References & Resources**



Anderson, S.F., Kelley, K., & Maxwell, S.E. (2017). Sample-size planning for more accurate statistical power: A method adjusting sample effect sizes for publication bias and uncertainty. Association for Psychological Science, 28, 1547-1562. DOI: 10.1177/0956797617723724

- Arnold, B.F., Hogan, D.R., Colford, J.M., & Hubbard, A.E. (2011). Simulation methods to estimate design power: An overview for applied research. BMC Medical Research Methodology, 11, 1-10. DOI: 10.1186/1471-2288-11-94
- Browne, W.J., Golalizadeh, M., & Parker, R.M.A. (2009) A Guide to Sample Size Calculations for Random Effect Models via Simulation and the MLPowSim Software Package. Retrieved March 2019, from http://www.bristol.ac.uk/cmm/software/mlpowsim/
- Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing type S (size) and type M (magnitude) errors. Association for Psychological Science, 9, 641-651. DOI: 10.1177/1745691614551642
- Green, P., & MacLeod, C.J. (2016). SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7, 493-498. DOI: 10.1111/2041-210X.12504
- Hickey, L., Grant, S.W., Dunning, J., & Siepe, M. (2018). Statistical primer: Sample size and power calculations why, when and how?
- Johnson, P.C.D., Barry, S.J.E., Ferguson, H.M., & Müller, P. (2015). Power analysis for generalized linear mixed models in ecology and evolution. Methods in Ecology and Evolution, 6, 133-142. DOI: 10.1111/2041-210X.12306
- Kontopantelis, E., Springate, D.A., Parisi, R., & Reeves, D. (2016). Simulation-based power calculations for mixed effects modelling: ipdpower in Stata. Journal of statistical software, 74, 1-25. DOI: 10.18637/jss.v074.i12
- Kruschke, J.K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. New York, NY: Academic Press
- Kruschke, J.K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances in Methods and Practices in Psychological Science, 1, 270-280. DOI: 10.1177/2515245918771304
- Landau, S., & Stahl, D. (2013). Sample size and power calculations for medical studies by simulation when closed form expressions are not available. *Statistical Methods in Medical Research*, *22*, 324-345. DOI: 10.1177/0962280212439578
- Luedicke, J. (2013). Powersim: Simulation-based power analysis for linear and generalised linear models. 2013 Stata Conference, Stata Users Group.



#### Thank you

#### Do you have any questions or feedback?

s.chadwick4@Lancaster.ac.uk | @chaddlewick | github.com/chaddlewick