
Multilevel Propensity Scores: An Evaluation 
of Findings

Alvaro Fuentes1 (fuentes@ipn.uni-kiel.de), Oliver Lüdtke12, Alexander Robitzsch12

1 Leibniz Institute for Science and Mathematics Education
2 Center for International Student Assessment



Treatment effect estimation
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Modelling treatment assignment
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Propensity score weighting
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Balancing weights (Li et al., 2018)
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Balancing weights (Li et al., 2018)
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Balancing weights (Li et al., 2018)
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Balancing weights (Li et al., 2018)
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Multilevel PS literature findings
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 Asymptotically unbiased estimation conditioning both across and 
within clusters (Li, Zaslavsky & Landrum, 2013; for PS matching, 
Steiner, Kim & Thoemmes, 2012)

 Underperformance of RE propensities vs FE propensities (Thoemmes 
& West, 2011; Li, Zaslavsky & Landrum, 2013)

 Automatic conditioning on omitted context (Arpino & Mealli, 2011; 
Li, Zaslavsky & Landrum, 2013)



Simulation study design
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Number of clusters (𝑁) 30
Units per cluster (𝑛𝑗) 10, 12,...,100

Outcome equation 𝑅2 .3 (𝛿 = 𝛽𝑋 = 𝛽𝑍 = 0.49)
Treatment equation 𝑅2 .2 or .6
Residual ICC of 𝑇𝑖𝑗 .1 or .4

Residual ICC of 𝑌𝑖𝑗 .2

Proportion treated .5

Normally distributed residuals 𝑢𝑇𝑗, 𝑢𝑌𝑗, 𝜖𝑌𝑖𝑗



Propensity score estimators
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 Fixed effects (FE) model

Cluster-specific intercepts  𝛼0𝑗 based on dummy indicators

→ No distributional assumption

 Random effects (RE) model
Multilevel logistic regression model

Cluster-specific intercepts  𝛼0𝑗 assumed to follow a normal distribution
Propensity score based on empirical Bayes estimate



Treatment effect estimators
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 Across clusters
Weighted mean difference with the entire sample

 Within clusters
Weighted average of cluster-specific weighted mean differences

, where



Results
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nj = 10 nj = 50

Weights % Bias RMSE % Bias RMSE

IPTW FE 
across 6.05% 0.214 0.15% 0.072

within 6.68% 0.205 1.31% 0.071

Truncated FE 
α=0.05

across 0.29% 0.157 0.05% 0.066

within 4.21% 0.170 0.91% 0.066

Overlap FE
across -0.06% 0.138 0.00% 0.059

within -0.06% 0.138 0.00% 0.059

IPTW RE 
across 33.68% 0.706 10.78% 0.231

within 13.39% 0.310 2.72% 0.085

Truncated RE 
α=0.05

across 32.48% 0.681 9.93% 0.213

within 13.00% 0.302 2.43% 0.080

Overlap RE
across 22.26% 0.477 6.26% 0.141

within 7.07% 0.200 1.21% 0.064

Overlap FE
Overlap RE

Truncated 0.05 (within)

Truncated 0.01 (within)

Truncated 0.05 

(across)

Truncated 0.01 

(across)

IPTW
Overlap 

IPTW FE
IPTW RE
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Treatment equation R2 = .6

Overlap FE
Overlap RE

Truncated 0.05 (within)

Truncated 0.01 (within)

IPTW
Overlap 

Truncated 0.05 

(across)

Truncated 0.01 

(across)

nj = 10 nj = 50

Weights % Bias RMSE % Bias RMSE

IPTW FE 
across 26.94% 0.656 5.32% 0.234

within 23.96% 0.553 12.55% 0.287

Truncated FE 
α=0.05

across 1.26% 0.211 0.20% 0.088

within 6.64% 0.232 2.30% 0.095

Overlap FE
across -0.09% 0.171 0.00% 0.072

within -0.09% 0.171 0.00% 0.072

IPTW RE 
across 64.46% 1.342 20.78% 0.458

within 40.49% 0.853 16.31% 0.353

Truncated RE 
α=0.05

across 32.34% 0.687 7.11% 0.169

within 22.49% 0.493 5.16% 0.134

Overlap RE
across 23.60% 0.509 5.46% 0.132

within 12.49% 0.305 2.26% 0.085

IPTW FE
IPTW RE



15

Overlap FE
Overlap RE

Truncated 0.05 (within)

Truncated 0.01 (within)

IPTW
Overlap 

Truncated 0.05 

(across)

Truncated 0.01 

(across)

Treatment residual ICC = .4

nj = 10 nj = 50

Weights % Bias RMSE % Bias RMSE

IPTW FE 
across 14.73% 0.373 2.62% 0.128

within 11.99% 0.307 5.08% 0.140

Truncated FE 
α=0.05

across 0.43% 0.185 0.09% 0.079

within 5.64% 0.204 1.52% 0.081

Overlap FE
across 0.12% 0.157 0.02% 0.066

within 0.12% 0.157 0.02% 0.066

IPTW RE 
across 31.21% 0.663 10.36% 0.233

within 20.49% 0.453 6.93% 0.166

Truncated RE 
α=0.05

across 18.02% 0.404 3.31% 0.102

within 17.06% 0.387 3.40% 0.102

Overlap RE
across 9.36% 0.242 2.12% 0.079

within 8.18% 0.229 1.54% 0.073

IPTW FE
IPTW RE
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Summary

 Conditioning across clusters may be sufficient if the propensity score 
is correctly specified.

 FE propensities dominate RE in all the simulated conditions in terms 
of bias and RMSE.

 Using propensities with cluster-specific intercepts we can 
automatically control for any omitted context. When clusters are 
small, FE propensities are best suited for this.

 Truncated and overlap weights are a practical and effective 
correction for the bias of extreme propensities also in the multilevel 
data case.

Next steps: more complex data-generating processes (interactions, 
random slopes…)
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