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Balancing weights (Li et al., 2018)
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Balancing weights (Li et al., 2018) I
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Balancing weights (Li et al., 2018) \ljI/
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Multilevel PS literature findings \Iji/

= Asymptotically unbiased estimation conditioning both across and
within clusters (Li, Zaslavsky & Landrum, 2013; for PS matching,
Steiner, Kim & Thoemmes, 2012)

= Underperformance of RE propensities vs FE propensities (Thoemmes
& West, 2011; Li, Zaslavsky & Landrum, 2013)

= Automatic conditioning on omitted context (Arpino & Mealli, 2011;
Li, Zaslavsky & Landrum, 2013)
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logit(e;;) = axXij +azZ; + ur;
Yij = 0Tij + fx Xij + BzZj + uyj + €evij

Number of clusters (N) 30

Units per cluster (n;) 10, 12,...100
Outcome equation R? 3 (6 = Bx =Bz = 0.49)
Treatment equation R? 20r.6

Residual ICC of Tj; Jor .4

Residual ICC of ¥;; 2

Proportion treated 5

Normally distributed residuals ur;, uy;, €y;; 10
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Propensity score estimators Niji/

10g1t(ém) = 5&03' + (3&1337;3'

= Fixed effects (FE) model
Cluster-specific intercepts @,; based on dummy indicators
— No distributional assumption

= Random effects (RE) model
Multilevel logistic regression model
Cluster-specific intercepts @,; assumed to follow a normal distribution
Propensity score based on empirical Bayes estimate
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Treatment effect estimators \IjI/

= Across clusters
Weighted mean difference with the entire sample
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=  Within clusters
Weighted average of cluster-specific weighted mean differences
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Results

FE, RE and overlap
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n; = 10 n; = 50
% Bias RMSE % Bias RMSE
6.05% 0.214 0.15% 0.072
6.68%  0.205 1.31% 0.071
0.29% 0.157 0.05% 0.066
4.21% 0.170 0.91% 0.066
-0.06% 0.138 0.00% 0.059
-0.06% 0.138 0.00% 0.059
33.68% 0.706 10.78% 0.231
13.39% 0.310 2.72% 0.085
32.48% 0.681 9.93% 0.213
13.00% 0.302 2.43% 0.080
22.26% 0.477 6.26% 0.141
7.07% 0.200 1.21% 0.064
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Treatment equation R? =

FE, RE and overlap
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n; = 10 n; = 50

% Bias RMSE % Bias RMSE
26.94%  0.656 5.32% 0.234
23.96% 0.553 12.55% 0.287
1.26% 0.211 0.20% 0.088
6.64% 0.232 2.30% 0.095
-0.09% 0.171 0.00% 0.072
-0.09% 0.171 0.00% 0.072
64.46% 1.342 20.78%  0.458
40.49% 0.853 16.31% 0.353
32.34% 0.687 7.11% 0.169
22.49% 0.493 5.16% 0.134
23.60% 0.509 5.46% 0.132
12.49% 0.305 2.26% 0.085
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Treatment residual ICC =

FE, RE and overlap
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n; = 10 n; = 50
% Bias RMSE % Bias RMSE
14.73% 0.373 2.62% 0.128
11.99% 0.307 5.08% 0.140
0.43% 0.185 0.09% 0.079
5.64% 0.204 1.52% 0.081
0.12% 0.157 0.02% 0.066
0.12% 0.157 0.02% 0.066
31.21% 0.663 10.36% 0.233
20.49% 0.453 6.93% 0.166
18.02% 0.404 3.31% 0.102
17.06% 0.387 3.40% 0.102
9.36% 0.242 2.12% 0.079
8.18% 0.229 1.54% 0.073
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Summary

= Conditioning across clusters may be sufficient if the propensity score
is correctly specified.

= FE propensities dominate RE in all the simulated conditions in terms
of bias and RMSE.

= Using propensities with cluster-specific intercepts we can
automatically control for any omitted context. When clusters are
small, FE propensities are best suited for this.

= Truncated and overlap weights are a practical and effective

correction for the bias of extreme propensities also in the multilevel
data case.

Next steps: more complex data-generating processes (interactions,
random slopes...)
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