

Multilevel Propensity Scores: An Evaluation of Findings

Alvaro Fuentes¹ (fuentes@ipn.uni-kiel.de), Oliver Lüdtke¹², Alexander Robitzsch¹² ¹ Leibniz Institute for Science and Mathematics Education ² Center for International Student Assessment

Treatment effect estimation

2

Modelling treatment assignment

3

Propensity score weighting

Observational study

Randomized experiment

PS Weighting

4

Distribution among the treated

$$p_1(X) \propto p(X)e(X)$$

Distribution among the controls

$$p_0(X) \propto p(X)(1 - e(X))$$

Name	Weights
Inverse Probability of Treatment Weights (IPTW)	$\left(\frac{1}{e(X)},\frac{1}{1-e(X)}\right)$
Overlap Weights	(1 - e(X), e(X))
Truncated Weights	$\left(\frac{1(\alpha < e(X) < 1 - \alpha)}{e(X)}, \frac{1(\alpha < e(X) < 1 - \alpha)}{1 - e(X)}\right)$

ΡN

$$\frac{1}{e(X)} p_1(X) \propto p(X)e(X)$$
$$\frac{1}{1 - e(X)} p_0(X) \propto p(X)(1 - e(X))$$

 $e(X) p_0(X) \propto p(X)(1 - e(X)) e(X)$

$$\frac{\mathbf{1}(\boldsymbol{\alpha} < \boldsymbol{e}(\boldsymbol{X}) < \mathbf{1} - \boldsymbol{\alpha})}{\boldsymbol{e}(\boldsymbol{X})} p_1(\boldsymbol{X}) \propto p(\boldsymbol{X}) \boldsymbol{e}(\boldsymbol{X}) \, \mathbf{1}(\boldsymbol{\alpha} < \boldsymbol{e}(\boldsymbol{X}) < \mathbf{1} - \boldsymbol{\alpha})$$

$$\frac{\mathbf{1}(\boldsymbol{\alpha} < \boldsymbol{e}(\boldsymbol{X}) < \mathbf{1} - \boldsymbol{\alpha})}{\mathbf{1} - \boldsymbol{e}(\boldsymbol{X})} p_0(\boldsymbol{X}) \propto p(\boldsymbol{X}) (1 - \boldsymbol{e}(\boldsymbol{X})) \mathbf{1}(\boldsymbol{\alpha} < \boldsymbol{e}(\boldsymbol{X}) < \mathbf{1} - \boldsymbol{\alpha})$$

Multilevel PS literature findings

- Asymptotically unbiased estimation conditioning both across and within clusters (Li, Zaslavsky & Landrum, 2013; for PS matching, Steiner, Kim & Thoemmes, 2012)
- Underperformance of RE propensities vs FE propensities (Thoemmes & West, 2011; Li, Zaslavsky & Landrum, 2013)
- Automatic conditioning on omitted context (Arpino & Mealli, 2011; Li, Zaslavsky & Landrum, 2013)

Simulation study design

$$logit(e_{ij}) = \alpha_X X_{ij} + \alpha_Z Z_j + u_{Tj}$$
$$Y_{ij} = \delta T_{ij} + \beta_X X_{ij} + \beta_Z Z_j + u_{Yj} + \epsilon_{Yij}$$

Number of clusters (N) Units per cluster (n_j) Outcome equation R^2 Treatment equation R^2 Residual ICC of T_{ij} Residual ICC of Y_{ij} Proportion treated

30
10, 12,...,100
.3 (
$$\delta = \beta_X = \beta_Z = 0.49$$
)
.2 or .6
.1 or .4
.2
.5

Normally distributed residuals u_{Tj} , u_{Yj} , ϵ_{Yij}

Propensity score estimators

$\operatorname{logit}(\hat{e}_{ij}) = \hat{\alpha}_{0j} + \hat{\alpha}_1 x_{ij}$

Fixed effects (FE) model

Cluster-specific intercepts $\hat{\alpha}_{0j}$ based on dummy indicators

 \rightarrow No distributional assumption

Random effects (RE) model

Multilevel logistic regression model

Cluster-specific intercepts $\hat{\alpha}_{0j}$ assumed to follow a normal distribution Propensity score based on empirical Bayes estimate

Treatment effect estimators

Across clusters

Weighted mean difference with the entire sample

$$\hat{\delta}_{across} = \frac{\sum_{j=1}^{N} \sum_{i=1}^{n_j} t_{ij} w_{ij} y_{ij}}{\sum_{j=1}^{N} \sum_{i=1}^{n_j} t_{ij} w_{ij}} - \frac{\sum_{j=1}^{N} \sum_{i=1}^{n_j} (1 - t_{ij}) w_{ij} y_{ij}}{\sum_{j=1}^{N} \sum_{i=1}^{n_j} (1 - t_{ij}) w_{ij}}$$

Within clusters

Weighted average of cluster-specific weighted mean differences

$$\hat{\delta}_{j} = \frac{\sum_{i=1}^{n_{j}} t_{ij} w_{ij} y_{ij}}{\sum_{i=1}^{n_{j}} t_{ij} w_{ij}} - \frac{\sum_{i=1}^{n_{j}} (1 - t_{ij}) w_{ij} y_{ij}}{\sum_{i=1}^{n_{j}} (1 - t_{ij}) w_{ij}}$$
$$\hat{\delta}_{within} = \frac{\sum_{j=1}^{N} w_{\bullet j} \hat{\delta}_{j}}{\sum_{j=1}^{N} w_{\bullet j}} \quad \text{, where } w_{\bullet j} = \sum_{i=1}^{n_{j}} w_{ij}$$

% bias 3 4

2

20

40

60 Cluster size 80

100

Truncated 0.01

Truncated 0.05

(across)

(across) °

		n _j = 10		n _j = 50	
Weights		% Bias	RMSE	% Bias	RMSE
IPTW FE	across	6.05%	0.214	0.15%	0.072
	within	6.68%	0.205	1.31%	0.071
Truncated FE	across	0.29%	0.157	0.05%	0.066
α=0.05	within	4.21%	0.170	0.91%	0.066
Overlap FE	across	-0.06%	0.138	0.00%	0.059
	within	-0.06%	0.138	0.00%	0.059
IPTW RE	across	33.68%	0.706	10.78%	0.231
	within	13.39%	0.310	2.72%	0.085
Truncated RE α=0.05	across	32.48%	0.681	9.93%	0.213
	within	13.00%	0.302	2.43%	0.080
	-				
Overlap RE	across	22.26%	0.477	6.26%	0.141
	within	7.07%	0.200	1.21%	0.064

-Truncated 0.01 (within)

Truncated 0.05 (within)

Treatment equation $R^2 = .6$

Cluster size

		n _j = 10		n _j = 50	
Weights	. .	% Bias	RMSE	% Bias	RMSE
IPTW FE	across	26.94%	0.656	5.32%	0.234
	within	23.96%	0.553	12.55%	0.287
Truncated FE	across	1.26%	0.211	0.20%	0.088
α=0.05	within	6.64%	0.232	2.30%	0.095
Overlag FF	across	-0.09%	0.171	0.00%	0.072
Overlap FE	within	-0.09%	0.171	0.00%	0.072
IPTW RE	across	64.46%	1.342	20.78%	0.458
	within	40.49%	0.853	16.31%	0.353
Truncated RE α=0.05	across	32.34%	0.687	7.11%	0.169
	within	22.49%	0.493	5.16%	0.134
Overlap RE	across	23.60%	0.509	5.46%	0.132
	within	12.49%	0.305	2.26%	0.085
O4 (with in)					
.ui (within)					

Truncated 0.05 (within)

Treatment residual ICC = .4

Truncated 0.05

(across)

20

40

60

Cluster size

80

100

		n _j = 10		n _j = 50	
Weights		% Bias	RMSE	% Bias	RMSE
IPTW FE	across	14.73%	0.373	2.62%	0.128
	within	11.99%	0.307	5.08%	0.140
Truncated FE	across	0.43%	0.185	0.09%	0.079
α=0.05	within	5.64%	0.204	1.52%	0.081
Overlap FE	across	0.12%	0.157	0.02%	0.066
	within	0.12%	0.157	0.02%	0.066
IPTW RE	across	31.21%	0.663	10.36%	0.233
	within	20.49%	0.453	6.93%	0.166
Truncated RE	across	18.02%	0.404	3.31%	0.102
α=0.05	within	17.06%	0.387	3.40%	0.102
Overlap RE	across	9.36%	0.242	2.12%	0.079
	within	8.18%	0.229	1.54%	0.073

Truncated 0.01 (within)

Truncated 0.05 (within)

Summary

- Conditioning across clusters may be sufficient if the propensity score is correctly specified.
- FE propensities dominate RE in all the simulated conditions in terms of bias and RMSE.
- Using propensities with cluster-specific intercepts we can automatically control for any omitted context. When clusters are small, FE propensities are best suited for this.
- Truncated and overlap weights are a practical and effective correction for the bias of extreme propensities also in the multilevel data case.

Next steps: more complex data-generating processes (interactions, random slopes...)

Thank you

Alvaro Fuentes¹ (fuentes@ipn.uni-kiel.de), Oliver Lüdtke¹², Alexander Robitzsch¹²

¹ Leibniz Institute for Science and Mathematics Education

² Center for International Student Assessment