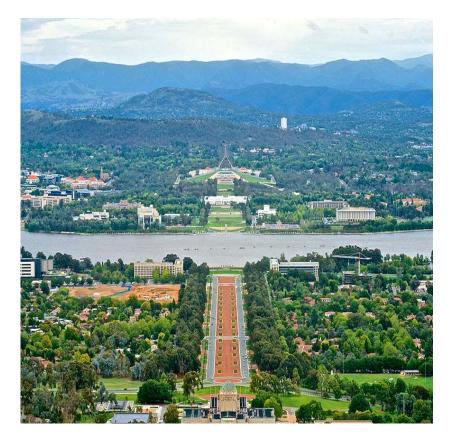


Multiple imputation in three level models

Alice Richardson, NCEPH, ANU Nidhi Menon, NCEPH, ANU

Introductions

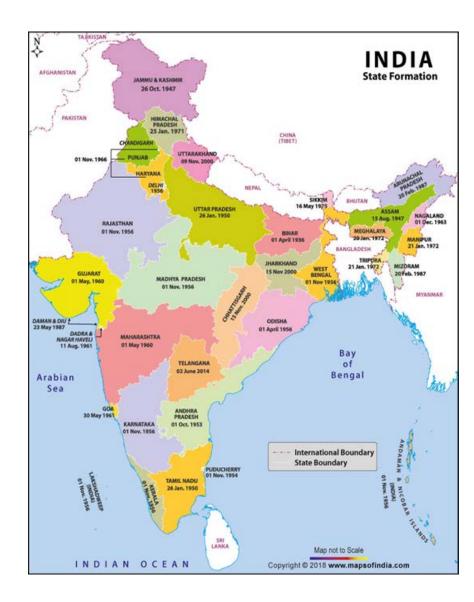


Overview

- Data
- Models
- Simulation study
- Results
- Future work

Data

- National Family Health Survey 4, India 2015 – 2016
- Information on population, health and nutrition for each state and Union Territory
- Vital estimates of the prevalence of malnutrition, anaemia, hypertension, HIV, and high blood glucose levels through a series of biomarker tests and measurements



Structure of NFHS- 4 (2015-16)

- Individuals
 Households
 Districts
- A total of 3,604,509 occupied households were interviewed.
- Response rates for women and men are observed at 92%. This implies that unit nonresponse was approximately 8%. The same cannot be said for item non-response
- Measure the relative impact of individual and household risk factors for anaemia using variables such as
 - Systolic blood pressure
 - Number of household members
 - Toilet facilities

Simulation study setup

Variable	Description
Level 3	Number of higher level units e.g. districts($n_k = 14$)
Level 2	Number of higher level units each nested within level 3 units. e.g. households ($n_{jk} = 800$)
Level 1	Number of lower level units each nested within level 2 units, further nested within level 3 units. e.g. household members($n_{ijk} = 4$)
X	Predictor variable measured at level 1 corresponding to ith individual in jth household in kth district
Z	Predictor variable measured at level 2 corresponding to j th household in k th district
W	Predictor variable measured at level 3 corresponding to kth district
Y	Outcome variable measured at level 1 corresponding to ith individual in jth household in kth district
X _{jk}	Mean of X _{ijk} calculated for each level 2 unit
¯ Z _k	Mean of Z _{jk} calculated for each level 3 unit
X _k	Mean of X _{ijk} calculated for each level 3 unit
\mathbf{X}_{ijk} - \overline{X}_{jk}	Deviation of each level 1 observation (X _{ijk}) from the level 2 mean
\overline{X}_{jk} - \overline{X}_{k}	Deviation of each level 2 mean from the level 3 mean
$Z_{jk} - \overline{Z}_k$	Deviation of each level 2 observation (Z _{jk}) from the level 3 mean

Random Intercept Model

$$\begin{aligned} \mathbf{Y}_{\text{ijk}} &= \mathbf{\gamma}_{000} + \mathbf{\gamma}_{100} \left(\mathbf{X}_{\text{ijk}} - \overline{X_{jk}} \right) + \mathbf{\gamma}_{200} \left(\overline{X_{jk}} - \overline{X_{k}} \right) + \\ \mathbf{\gamma}_{010} \left(\mathbf{Z}_{\text{jk}} - \overline{Z_{k}} \right) + \mathbf{\gamma}_{001} \left(\mathbf{W}_{\text{k}} \right) + \mathbf{u}_{\text{k}} + \mathbf{r}_{\text{jk}} + \mathbf{e}_{\text{ijk}} \end{aligned}$$

Assumed Values and Distributions for Data generation

Variables	Error Terms
X ~ N(75.6, 17.14)	u _k ~ N(0,1)
Z ~ Pois(= 3)	r _{jk} ~ N(0,1)
W ~ Pois(\ = 3)	e _{ijk} ~ N(0,1)
	1

Constants

$$\gamma_{000} = 2$$
 $\gamma_{100} = 2.5$
 $\gamma_{200} = 2.0$
 $\gamma_{010} = 2.5$
 $\gamma_{001} = 2.5$
 $\gamma_{001} = 2.5$
 $i = 4$
 $j = 800$
 $k = 14$

MAR Mechanism in X_{1} Z and W

We create 2 variables X_2 and Z_2 correlated to X and Z such that corr(X, X_2) = 0.5 and corr(Z, Z_2) = 0.5

• Probability of MAR in X_{ijk}

$$-p_i = \frac{e^{X_2 + \beta Y_s}}{1 + e^{X_2 + \beta Y_s}}; \text{ where } Y_s = \frac{(Y - E(Y))}{SD(Y)}$$

• Probability of MAR in Z_{jk}

$$-p_{i} = \frac{e^{Z2+\beta Y's}}{1+e^{Z2+\beta Y's}}; \text{ where } Y'_{s} = \frac{(\overline{Yjk}-E(\overline{Yjk}))}{SD(\overline{Yjk})}$$

• Probability of MAR in W_k

$$- p_{i} = \frac{e^{2-0.85Y's}}{1+e^{2-0.85Y's}}; \text{ where } Y'_{s} = \frac{(\overline{Yk} - E(\overline{Yk}))}{SD(\overline{Yk})}$$

Multiple Imputation using Chained Equations (mice)

- To create multiple imputations y* of y_{mis}
 - 1. Calculate the posterior distribution $P(\theta|y_{obs})$ of θ based on the observed data y_{obs} ;
 - 2. Draw a value θ^* from P($\theta | y_{obs}$);
 - 3. Draw a value y^* from P($y_{mis}|y_{obs}, \theta = \theta^*$), the conditional posterior distribution of y_{mis} given $\theta = \theta^*$.
- Repeat 2 3 for all variables \rightarrow first cycle
- Run cycles till convergence

Joint modelling (JoMo)

 Employs Bayesian estimation that views the missing values, residuals, and model parameters as random variables having a joint distribution.
 For iteration (t), the univariate draw steps are

$$y_{ij}^{(t)} \sim N \left(\beta_{0(y)}^{(t)} + \beta_{1(y)}^{(t)} x_{ij}^{(t-1)} + \beta_{2(y)}^{(t)} z_j + u_{0j(y)}^{(t)}, \sigma^{2(t)}_{(y|xz)}\right)$$
$$x_{ij}^{(t)} \sim N \left(\beta_{0(x)}^{(t)} + \beta_{1(x)}^{(t)} y_{ij}^{(t)} + \beta_{2(x)}^{(t)} z_j + u_{0j(x)}^{(t)}, \sigma^{2(t)}_{(x|yz)}\right)$$

- One of the limiting factors of joint modelling is that it works best at the lowest level.
- To overcome this limitation, JoMo uses separate Gibbs samplers one for each level with missingness.

Passive imputation – Impute then Transform approach

Derived Variables \overline{X}_{jk} , \overline{Z}_k and \overline{X}_k were recalculated using the imputed values of X and Z.

d_st_c =(
$$X_{ijk}$$
- \overline{X}_{jk}), d_c_sc =(\overline{X}_{jk} - \overline{X}_k) and d_z =(Z_{jk} - \overline{Z}_k)

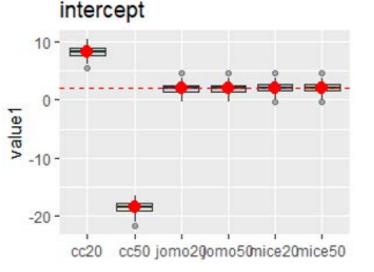
Overview of methodology used for imputation

- Gelman and Hill approach
- Create two different datasets for individual and group level data
- Group level dataset includes aggregate forms of individual level measurements when imputing for missing values in this level.
- 20% and 50% MAR introduced in level-1 and level-2 covariates separately and combined.

Overview of methodology used for imputation (cont.)

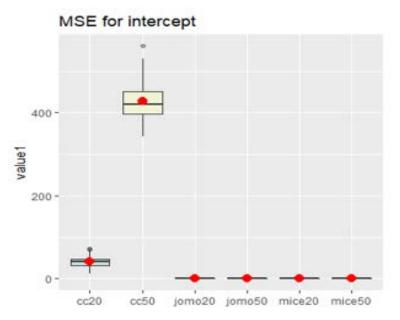
- Levels 2 and 3 were combined to identify a unique clustering variable to identify each observation in the dataset. This was done in the imputation model to overcome the software limitation of defining only one clustering variable.
- Performance of MICE and JoMo were compared with complete case analysis.
- Measures to assess performance
 - Comparison of distribution of imputed v/s observed data
 - Mean Squared Errors
 - Relative Bias

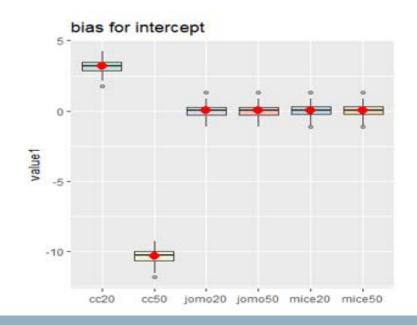
MAR in Xijk & MAR in Zjk



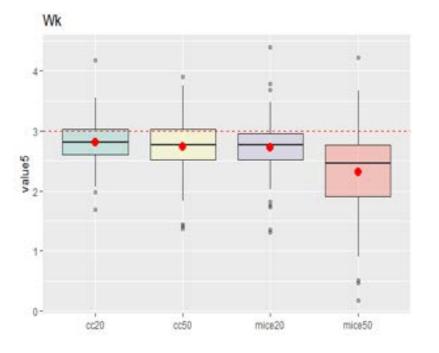
Large variation in the parameter estimated of the intercept, large MSE and bias for intercept was observed when CC was used to analyse for MAR in level 1 variables (X_{iik}) only.

In analysis for MAR in level 2 variables (Z_{jk}) , we observed that all 3 methods performed well across different scenarios (results not shown).



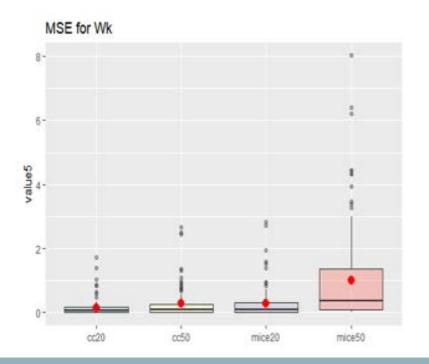


20% and 50% MAR in Wk

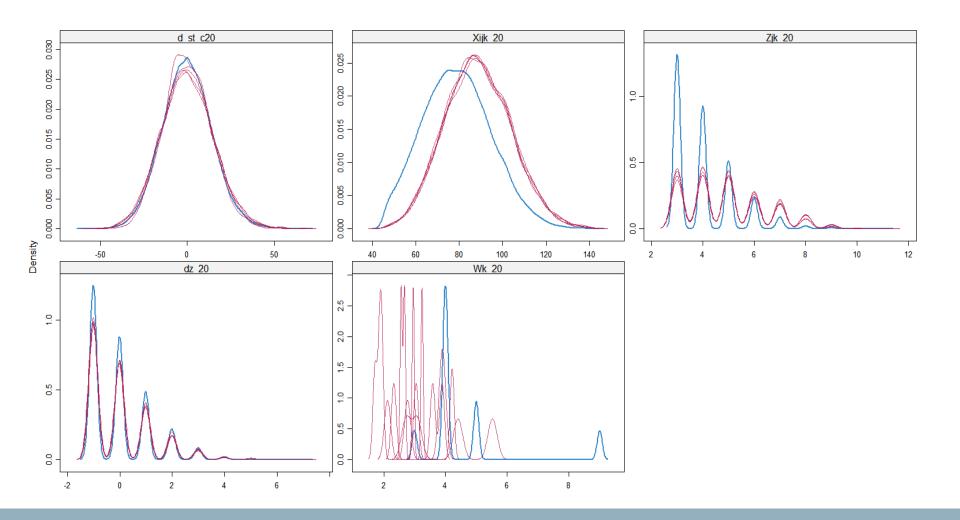


MI using JoMo for MAR in level 3 variables is currently being investigated

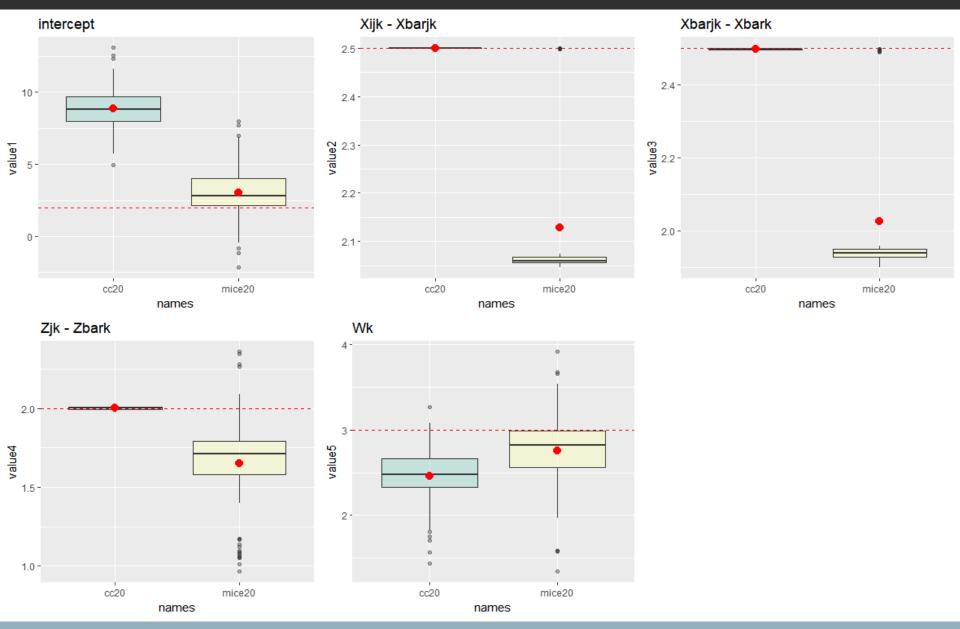
- Two methods were compared- CC and MICE with 20% and 50% MAR in Wk.
- A large variability in MSE was observed for 50% MAR in Wk using MICE



Introducing 20% MAR in X, Z and W



MAR in X, Z & W – Parameter Estimates



Future work

- Replication of MAR in W using JoMo
- Performance of MI procedures with varying number of households/districts and household/district sizes
- Performance of MI with varying ICC values
- Contact us!
- <u>Alice.Richardson@anu.edu.au</u>
 <u>Nidhi.Menon@anu.edu.au</u>