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Multiple imputation in three level models



Introductions
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Overview
• Data
• Models
• Simulation study
• Results
• Future work



Data
• National Family Health Survey 4, 

India 2015 – 2016

• Information on population, health 
and nutrition for each state and 
Union Territory

• Vital estimates of the prevalence of 
malnutrition, anaemia, 
hypertension, HIV, and high blood 
glucose levels through a series of 
biomarker tests and measurements
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Structure of NFHS- 4 (2015-16)
• Individuals Households Districts

• A total of 3,604,509 occupied households were interviewed.

• Response rates for women and men are observed at 92%. This 
implies that unit nonresponse was approximately 8%. The same 
cannot be said for item non-response

• Measure the relative impact of individual and household risk factors 
for anaemia  using variables such as

– Systolic blood pressure
– Number of household members
– Toilet facilities
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Simulation study setup
Variable Description
Level 3 Number of higher level units e.g. districts(nk = 14)
Level 2 Number of higher level units each nested within level 3 units. e.g. households (njk = 800)

Level 1 Number of lower level units each nested within level 2 units, further nested within level 3 units.
e.g. household members(nijk = 4)

X Predictor variable measured at level 1 corresponding to ith individual in jth household in kth district

Z Predictor variable measured at level 2 corresponding to jth household in kth district

W Predictor variable measured at level 3 corresponding to kth district
Y Outcome variable measured at level 1 corresponding to ith individual in jth household in kth district

�Xjk Mean of Xijk calculated for each level 2 unit
�Zk Mean of Zjk calculated for each level 3 unit
�Xk Mean of Xijk calculated for each level 3 unit
Xijk - �𝑋𝑋jk Deviation of each level 1 observation (Xijk) from the level 2 mean
�𝑋𝑋jk - �𝑋𝑋k Deviation of each level 2 mean from the level 3 mean
Zjk -�̅�𝑍k Deviation of each level 2 observation (Zjk) from the level 3 mean



Random Intercept Model
Yijk = γ000 + γ100 (Xijk - 𝑿𝑿𝒋𝒋𝒋𝒋 ) + γ200 (𝑿𝑿𝒋𝒋𝒋𝒋 - 𝑿𝑿𝒋𝒋 ) +      
γ010 (Zjk - 𝒁𝒁𝒋𝒋 ) + γ001 (Wk) + uk + rjk + eijk

Error Terms
uk ~ N(0,1)
rjk ~ N(0,1)
eijk ~ N(0,1)

Constants
γ000 = 2
γ100  = 2.5
γ200  = 2.0
γ010  = 2.5
γ001  = 2.5
i = 4
j = 800
k = 14

Variables
X ~ N(75.6, 17.14)

Z ~ Pois(λ = 3)

W ~ Pois(λ = 3)

Assumed Values and Distributions for Data 
generation
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MAR Mechanism in X, Z and W

We create 2 variables X2 and Z2 correlated to X and Z such that 
corr(X, X2) = 0.5 and corr(Z, Z2) = 0.5

• Probability of MAR in Xijk

– pi =   𝑒𝑒𝑋𝑋𝑋+ 𝛽𝛽𝑌𝑌𝑌𝑌

1+𝑒𝑒𝑋𝑋𝑋+ 𝛽𝛽𝑌𝑌𝑌𝑌 ; where Ys = (Y – E(Y))
SD(Y)

• Probability of MAR in Zjk

– pi =   𝑒𝑒𝑍𝑍𝑋+𝛽𝛽𝑌𝑌
′𝑌𝑌

1 +𝑒𝑒𝑍𝑍𝑋+𝛽𝛽𝑌𝑌
′𝑌𝑌 ; where Y’s=

(𝑌𝑌𝑌𝑌𝑌𝑌– E(𝑌𝑌𝑌𝑌𝑌𝑌))
SD(𝑌𝑌𝑌𝑌𝑌𝑌)

• Probability of MAR in Wk

– pi =   𝑒𝑒𝑋−0.85𝑌𝑌′𝑌𝑌

1+𝑒𝑒𝑋−0.85𝑌𝑌′𝑌𝑌 ; where Y’s=
(𝑌𝑌𝑌𝑌– E(𝑌𝑌𝑌𝑌))

SD(𝑌𝑌𝑌𝑌)
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Multiple Imputation using Chained 
Equations (mice)
• To create multiple imputations y∗ of ymis

1. Calculate the posterior distribution P(θ|yobs) of θ 
based on the observed data yobs;

2. Draw a value θ∗ from P(θ|yobs);
3. Draw a value y∗ from P(ymis|yobs, θ = θ∗), the 

conditional posterior distribution of ymis given  θ = θ∗.
• Repeat 2 - 3 for all variables → first cycle
• Run cycles till convergence
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Joint modelling (JoMo)
• Employs Bayesian estimation  that views the missing values, residuals, 

and model parameters as random variables having a joint distribution. 
For iteration (t), the univariate draw steps are

yij
(t) ~ N (β0(y)

(t) + β1(y)
(t)xij

(t-1) + β2(y)
(t)zj + u0j(y)

(t), σ2(t)
(y|xz))

xij
(t) ~ N (β0(x)

(t) + β1(x)
(t)yij

(t) + β2(x)
(t)zj + u0j(x)

(t), σ2(t)
(x|yz))

• One of the limiting factors of joint modelling is that it works best at the 
lowest level.

• To overcome this limitation, JoMo uses separate Gibbs samplers – one 
for each level with missingness. 



Passive imputation – Impute then Transform 
approach

Derived Variables �𝑋𝑋𝑌𝑌𝑌𝑌, �̅�𝑍𝑌𝑌and �𝑋𝑋𝑌𝑌were recalculated using the imputed values of
X and Z.

d_st_c =(𝑿𝑿𝒊𝒊𝒋𝒋𝒋𝒋- �𝑋𝑋𝑌𝑌𝑌𝑌), d_c_sc =( �𝑋𝑋𝑌𝑌𝑌𝑌- �𝑋𝑋𝑌𝑌)and d_z =(𝒁𝒁𝒋𝒋𝒋𝒋 -�̅�𝑍𝑌𝑌)

impList<- miceadds::mids2datlist(imp)
within(impList,{

Xbar_jk<-clusterMeans(Xijk_20,level2)
d_st_c20 <- (Xijk_20 - Xbar_jk)
Xbar_k<-clusterMeans(Xijk_20, level3)
d_c_sc <- (Xbar_jk - Xbar_k)

})
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Overview of methodology used for imputation

• Gelman and Hill  approach
• Create two different datasets for individual and group level data
• Group level dataset includes aggregate forms of individual level 

measurements when imputing for missing values in this level. 

• 20% and 50% MAR introduced in level-1 and level-2 covariates 
separately and combined.



• Levels 2 and 3 were combined to identify a unique clustering variable 
to identify each observation in the dataset. This was done in the 
imputation model to overcome the software limitation of defining only 
one clustering variable.

• Performance of MICE and JoMo were compared with complete case 
analysis. 

• Measures to assess performance
– Comparison of distribution of imputed v/s observed data
– Mean Squared Errors
– Relative Bias 

Overview of methodology used for imputation 
(cont.)
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The correct imputation model at Level 2 in a 3-level setting would be a random-effects model based on the aggregated data at Level 2 with a random intercept at Level 3.Complete case = available case.We are about to go through simulation results: missing in X (known), missing in Z (less known), missing in W (new)



Large variation in the parameter estimated of the 
intercept, large MSE and bias for intercept was 
observed when CC was used to analyse for MAR in 
level 1 variables (Xijk) only. 

In analysis for MAR in level 2 variables (Zjk), we 
observed that all 3 methods performed well across 
different scenarios (results not shown).

MAR in Xijk & MAR in Zjk
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• Two methods were compared- CC and 
MICE with 20% and 50% MAR in Wk. 

• A large variability in MSE was 
observed for 50% MAR in Wk using 
MICE

20% and 50% MAR in Wk

• MI using JoMo for MAR in level 3 
variables is currently being 
investigated



Introducing 20% MAR in X, Z and W
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MAR in X, Z & W – Parameter Estimates
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Future work 

• Replication of MAR in W using JoMo
• Performance of MI procedures with varying 

number of households/districts and 
household/district sizes

• Performance of MI with varying ICC values

• Contact us!
• Alice.Richardson@anu.edu.au

Nidhi.Menon@anu.edu.au
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