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Cattell’s data box
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Cross-sectional research: N is large, T=1
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Cross-sectional research: A single snapshot
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Cross-sectional research: A single snapshot

france

5/120



Cattell’s data box
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Panel research: N is large, T is small
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Panel research: A few snapshots

8/120



Cattell’s data box
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Time series data: N=1 and T is large

variables
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Time series analysis: Many snapshots
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Pioneers of idiographic research in psychology
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Idiographic (N=1) research in psychology

N=1 research has included:

Cattell's P-technique: factor analysis of N=1 data

Dynamic factor analysis: considering lagged relationships

e Measurement burst design: multiple waves of intensive measurements

Intervention research: ABAB design etc.

Critique of this kind of research:
o within-person fluctuations are just noise
e results are not generalizable

e no one has these data
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New technology

Smart phones

Secure continuous remote
alcohol monitor (SCRAM)
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Intensive longitudinal data

Different forms of intensive longitudinal data:

daily diary (DD); self-report end-of-day

experience sampling method (ESM); self-report of subjective experience
ecological momentary assessment (EMA); healthcare related self-report
ambulatory assessment (AA); physiological measurements

event-based measurements; self-report after a particular event

observational measurements; expert rater

For more info on methodology, check out:

Seminar of Tamlin Conner and Joshua Smyth on YouTube
(https://www.youtube.com/watch?v=nQBBVpIvBIQ)

Society for Ambulatory Assessment (http://www.saa2009.org/)
Life Data (https://www.lifedatacorp.com/)
Quantified Self (http://quantifiedself.com/)
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Characteristics of these kind of data

Data structure:

one or more measurements per day
typically for multiple days

sometimes multiple waves (i.e., Nesselroade's measurement-burst design)

Advantages of ESM, EMA and AA

no recall bias
high ecological validity
physiological measures over a large time span

monitoring of symptoms and behavior, with new possibilities for feedback and
intervention (e-Health and m-Health)

window into the dynamics of processes
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A paradigm shift

Taken from Hamaker and Wichers (2017)
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QOutline

Modeling the dynamics of ILD

Separating between-person and within-person variance

Application 1: Daily negative affect and depressive symptomatology

Application 2: Intervention study with ESM

Application 3: Dyadic daily diary data
Application 4: Latent AR(1) model

Discussion
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What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics,
seismology, meteorology, control engineering, and signal processing.

Main characteristics:

® N=1 technique
e T is large (say >50)

® concerned with trends, cycles and autocorrelation structure (i.e., serial
dependency)

goal: forecasting (# prediction)
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Partial autocorrelation function (PACF)

Partial autocorrelation at lag k: The correlation between y; and ;1
after removing the effect of the intermediate observations (i.e., ;1

to Yi—kt1).
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Sequence, ACF and PACF

White Noise process
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QOutline

Modeling the dynamics of ILD

Separating between-person and within-person variance

Application 1: Daily negative affect and depressive symptomatology

Application 2: Intervention study with ESM

Application 3: Dyadic daily diary data
Application 4: Latent AR(1) model

Discussion
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A fundamental problem in a nutshell

Cross-sectional relationship Within-person relationship Between-person relationship

Percentage of typos
Percentage of typos
Percentage of typos

Number of words per minute Number of words per minute Number of words per minute

Taken from Hamaker (2012).
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Three perspectives on data

Cross-sectional
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Between-person differences in within-person slopes

Number of typos

Negative affect

B

Typing speed Negative event Preceding negative affect

Current negative affect

Taken from Hamaker and Grasman (2014).

In conclusion: To study within-person processes we need
e (intensive) longitudinal data
¢ to decompose observed variance into within and between

e to consider individual differences in within-person dynamics
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QOutline

e Modeling the dynamics of ILD
e Separating between-person and within-person variance

o Application 1: Daily negative affect and depressive
symptomatology

e Application 2: Intervention study with ESM
e Application 3: Dyadic daily diary data
e Application 4: Latent AR(1) model

e Discussion
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Data: Daily measurements affect

Data come from the COGITO study of the MPI in Berlin; goal is to
study aging using a younger and older sample.

Analyses here are based on Hamaker et al. (in preparation).

Characteristics of the younger and older sample:
o aged 20-31; aged 65-80
e 101 individuals; 103 individuals

e about 100 daily measurements of positive affect (PA) and negative
affect (NA)
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Decomposition

Decomposition into a between part and a within part
PAy = ppa s + PAG
NAy = pna,i + NAG,

where

® pa; and pna,; are the individual's means on PA and NA (i.e., baseline, trait, or
equilibrium scores) = between-person part

® PAj and NAj; are the within-person centered (cluster-mean centered) scores =
within-person part
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Total, between-, and within-person variance

2.5

1CC=.89

ICC=.68

1.5
ICC=.64

=

0.5

PA young PA older NA young

HTotal W Between M Within

Intraclass correlation:
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Bivariate model: Multilevel vector AR(1) model

Decomposition
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Within-person level model

Lagged within-person model:

A% = dppiPAT 1 + ¢pNiNAT 1 + CPait
NAzt = d)NN,ZNAz,t—l + ¢NP,zPAz,t—1 + Cnva,it

where
® ¢pp; is the autoregressive parameter for PA (i.e., inertia, carry-over)
® $uyn,; is the autoregressive parameter for NA (i.e., inertia, carry-over)
¢pn,; is the cross-lagged parameter for NA to PA (i.e., spill-over)
on~p,; is the cross-lagged parameter for PA to NA (i.e., spill-over)

Cpa,it is the innovation for PA (residual, disturbance, dynamic error)

Cna,it is the innovation for NA (residual, disturbance, dynamic error)

Parameters estimated at this level are the residual variances and

covariance:
CPA,it 0 |61
P~ MN
lcNA,it] HO] ’ [921 922”
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Autoregressive parameter (also known as inertia)

ACF PACF
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The AR parameter indicates how quickly a person recovers after being
perturbed.

Affective inertia has been empirically related to

® neuroticism (+) and agreeableness (-) (Suls, Green & Hillis, 1998)

concurrent depression (+) (Kuppens, Allen & Sheeber, 2010)

future depression (+) (Kuppens, Sheeber, Yap, Whittle, Simmons & Allen, 2012)
rumination (+) (Koval, Kuppens, Allen & Sheeber, 2012)

self-esteem (-) (Houben, Van den Noortgate & Kuppens, 20150)

life-satisfaction (-) (Houben et al., 2015)

PA (-) and NA (+) (Houben et al., 2015)
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Between-person level model

Between level: fixed and random effects

[ 1ipa,i] TP [ up,;

INA,i YN UN

PPPi| _ | VPP | L |uPP wi ~ MN(0, ¥)
dPN,i VPN UPN i

ONP,i YNP UNP,;

[dnnil  Lyaw]  Lunwad

Where:

® ~p to ynnv = fixed effects

® up; to uny,; = random effects

Parameters estimated at this level are:
® 6 fixed effects (i.e., 7's)
® 6 variances for random effects (i.e., diagonal elements of W)

® 15 covariances between the random effects (i.e., off-diagonal elements in ¥)
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Bivariate model: Mplus code

VARIABLE:
names = ID sessdate nal na2 na3 na4 na5 naée nal na8 na% nal0
pal pa2 pa3 pad pab paé pa7 pa8 pa% palld sessionNr
age pre sex CESDpre CESDpost dayNA dayPA older;
cluster = ID;
usevar = dayPA dayNA;
lagged = dayPA (1) dayNA(1l);
tinterval = sessdate (1)
missing = all (-999);
ANALYSIS: TYPE IS TWOLEVEL random;
estimator=bayes: proc = 2;
fbiter= 5000; bseed = 2359:
thin = 10;
MODEL:
SWITHIN®
p_pp | dayPA ON dayPRA&l;
p_pn | dayPA ON dayNAs&l;
p_np | dayNA ON dayPRA&l:
p_nn | dayNA ON dayNA&l:
$BETWEEN$%

p_pp WITH p pn-p_nn dayPA dayNA;
p_pn WITH p_np-p_nn dayPA dayNA;
p_np WITH p_nn dayPA dayNA;

p_nn WITH dayPA dayNA;

dayPA WITH dayNA;
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Mplus results: Within-person (younger sample)

Estimate
Within Level
DAYNA WITH
DAYPA -0.069%
Residual Variances
DAYPA 0.414
DAYNA 0.302

Posterior

5.D.

0.004

0.006
0.004

One-Tailed

P-Value

0.000

0.000
0.000

95% C.I.
Lower 2.5% Upper 2.5%
-0.076 -0.061
0.403 0.426
0.294 0.311

Significance

+
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Mplus results: Between-person (younger sample)

[---1

Between Level

Variances
DAYPA
DAYNA
P PP
P_PN
P_NP
P NN

coocoow

ccooop

Estimate

.09%0
.977
.334
.050
.038
.370

.178
.595
.055
.024
.013
.062

Posterior
S.

coococo

ccoooo

D.

.110
077
.026
.022
.015
.027

.189
.101
.010
.006
.003
.012

One-Tailed
P-Value

cooooco

ccoooo

.000
.000
.000
.016
.006
.000

.000
.000
.000
.000
.000
.000

95%

Lower 2.5%

coocooN

ccoooo

.875
.8260
.283
.006
.008
.315

.886
.443
.039
.014
.008
.044

C.I.

Upper 2.5%

coocorWw

cc oo ok

.308
.128
.387
.093
.068
.423

.618
.832
.079
.039
.021
.089

Significance

EE N

S
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Comparing cross-lagged parameters

Standardization in multilevel models is a tricky issue.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four
forms of standardization in multilevel models, using:

total variance (i.e., grand standardization)
between-person variance (i.e., between standardization)
average within-person variance

within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it parallels standardizing
when N=1.

Standardized fixed effect should be the average standardized
within-person effect.
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Mplus standardized results (younger sample)

STDYX Standardization

Estimate

Posterior
S.

D.

One-Tailed
P-Value

Within-Level Standardized Estimates Averaged Over Clusters

P_PP | DAYPA ON
DAYPA&L

P PN | DAYPA ON
DAYNA&L

P NP | DAYNA ON
DAYPA&L

P NN | DAYNA ON
DAYNA&L

DAYNA
DAYPA

WITH

Residual Variances
DAYPA
DAYNA

0.

oo

335

.034

.038

.370

.194

.816
.792

0

.011

.013

.011

.012

.010

.008
.008

0.

oo

000

.006

.000

.000

.000

.000
.000

0

85%

Lower 2.5%

.312

.008

.017

.347

.213

.799
.775

C.I.
Upper 2.5%

oo

.358

.059

.059

-394

-175

.832
.808

Significance
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Mplus standardized results (younger sample)

R-SQUARE

Within-Level R-Square Averaged Across Clusters

Posterior One-Tailed 95% C.I.
Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5%
DAYPA 0.184 0.008 0.000 0.168 0.201
DAYNA 0.208 0.008 0.000 0.192 0.225

40 /120



Between-person level: Correlated random effects

To represent the correlation matrices of the 6 random effects in each

group, we can use the network representation (with qgraph from Sacha
Epskamp in R):

Young sample Older sample

R

Y, \ j"‘)
@ ¢IjD | Ppp

\C

Nva
QF’

NG,
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Including level 2 predictor and outcome

Depression was measured prior to the ILD phase and afterwards, using the
CESD; we include these measures at the between-person level as a
predictor and an outcome.

Between level: Including a level 2 predictor

KPA; = Yoo + Yo1 CESDpre; + up;
unA; = Y10 + v11 CESDpre; + wi;
¢pp,i = Y20 + Y21 CESDpre; + ug;
¢pn,i = Y30 + 131 CESDpre; + uz;
ONN,i = Va0 + Y41 CESDpre; + uy;
dnp,i = Y50 + ¥51 CESDpre; + us;

Between level: Including a level 2 outcome

CESDpost; = 60 + v61 CESDpre; + Ye2/tPA,i + Y6314NA,i
+Y649PP,i + V659 PN,i + V66PNN,i + V61ONP,i + Us;

42/120



Dynamic mediation model
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Mplus input mediation model

VARIABLE:

names = ID sessdate nal na2 na3 na4 na5 naé na7 na8 na% nalld
pal paZ pa3 pad pab paé pa7 pa8 pa9 palld sessionNr
age pre sex CESDpre CESDpost dayNA dayPA older;

cluster = D7

usevar = dayPA dayNA CESDpre CESDpost;

between = CESDpre CESDpost;

lagged = dayPA(1l) dayNA(1l):

tinterval = sessdate (1) ;

missing = all(-99%99);

DEFINE: CENTER CESDpre CESDpost (GRANDMEAN) :
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Mplus input mediation model

MODEL:

SWITHINS

p pp | dayPA ON dayPR&al;

p_pn | dayPA ON dayNA&l;
p_np | dayNA ON dayPR&l;
p_nn | dayNA ON dayNA&l;

$BETWEEN%
p_pp-p_nn dayPA dayNA ON CESDpre (al-aé);
CESDpost ON p pp-p nn dayPA dayNA CESDpre (bl-b7);

model constraint:

new (ab p pp); ab p pp=al*bl;
new (ab_p pn); ab_p pn=a2*b2;
new (ab_p np); ab_p np=a3*b3;
new (ab_p nn); ab_p nn=ad*bd;
new (ab_dayPA); ab_dayPA=a5*b5;
new (ab_dayNA); ab_dayNRA=aé*bé;

Note that the default here is that the residuals are not correlated.
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Mplus output mediation model (younger sample)

[...]

Between Level

[...]

Intercepts
CESDPOST
DAYPA
DAYNA
P_PP
P_PN
P_NP
P NN

Residual Variances

CESDPOST

DAYPA

DAYNA

P PP

P_PN

P_NP

P_NN

New/Additional Parameters

AB P PP
AB P PN
AB P_NP
AB_P NN
AB DAYPA
AB DAYNA

Estimate

cococoocwo

cooocoro

.104
.088
.989
.338
.031
.035
.376

.067
.049
.517
.045
.019
.010
.043

0.010

-0.
-0.
0.
0.
0.

002
004
195
049
028

Posterior
S.

ocoooo oo coooocoo

cooooo

D.

.136
.103
.076
.024
.020
.014
.024

.012
.158
.091
.008
.005
.003
.008

.025
.032
.037
.070
.035
.043

One-Tailed
P-Value

coooooo coocoocoo

coocooo

.223
.000
.000
.000
.057
.006
.000

.000
.000
.000
.000
.000
.000
.000

.266
. 439
.401
.000
.029
.234

95%

Lower 2.5%

coooomO

ocoooo oo

.167
.888
.844
.289
.008
.007
.329

.048
.798
377
.032
.011
.005
.031

.028
-0.
-0.
.081
-0.
-0.

074
089

001
052

C.I.

Upper 2.5%

cooocoro cococorwo

coocooo

365
293
146
386
071
062
423

095
416
729
064
030
016
062

076
062
067
359
135
119

Significance

*

ROk R b b
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Mplus output mediation model (older sample)

[...1

Between Level

[...1

Intercepts
CESDPOST
DAYPA
DAYNA
P_PP
P PN
P_NP
P NN

Residual Variances

CESDPOST

DAYFA

DAYNA

P_PP

P_PN

P NP

P_NN

New/Additional Parameters

AB P PP
AB P_PN
AB_P_NP
AB P NN
AB_DAYPA
AB_DAYNA

Estimate

cCoocooWw o

coocoor o

0.
-0.
Q.
-0.
0.
0.

015
566
313
421
133
0le
239

039
416
269
056
083
024
051

005
004
012
036
028
027

Posterior
S.D.

L113
.120
.052
.026
.039
.017
.027

coooocoo

.006
.221
.041
.010
.021
.004
.009

coocoooo

.016
.025
.027
.038
.038
.036

cocooooo

One-Tailed
P-Value

coooooo coooocoo

cooooo

.448
.000
.000
.000
.000
.167
.000

.000
.000
.000
.000
.000
.000
.000

.302
.396
.268
.112
.209
.194

95%

Lower 2.5%

OO0 O0OWwOo

[Ny e e N =]

210
336
210
370
057
018
185

029
079
203
039
051
018
037

.018
-0.
-0.
-0.
-0.
-0.

061
035
130
042
040

C.I.

Upper 2.5%

coocooro coooowo

cocooooo

.236
.796
.417
.472
.212
.051
.291

.053
.918
.365
.079
.131
.035
.072

.049
.045
.076
.025
.110
.108

Significance

ko ok F

ok ok b ok F ok
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Random variance (cf. Jongerling et al., 2015)

Within level: AR(1) with random ¢;
NAG = ¢iNAT, 1 + Cat Git ~ N(0,0?)

Where ( is the innovation, consisting of:

® external influences

® reactivity to external influences

Reasons to assume individual differences for o2:

® individuals may differ with respect to the variability in exposure to external factors

e individuals may differ with respect to their reactivity to external influences (see
reward experience and stress sensitivity research)

Hence, we allow for a random innovation variance using a log normal
distribution.
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Random innovation variance: Univariate model
Within level: AR(1) with random ¢;
NAj = ¢iNA;':t_1 + Cit Gt ~ N(0, U?)

Between level: fixed and random effects

i = Yy T Uo; Up; 0| |vn
Pi = Yy + u1; upg| ~ MN [ |0, |21 922
108(07) = Yiog(o2) + U2 Up; 0| |31 32 33

MODEL:
SWITHIN%

p nn | dayNA ON dayNA&l;
logRVNA | dayNA;

$BETWEENS%

p nn WITH logRVNA dayNA;
logRVNA WITH dayNA;
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Bivariate model: Random innovation variance

In the bivariate case, we want random innovation variances AND
random innovation covariance.

The latter is modeled with an additional factor 7;:

Decomposition

® -7, is the shared part (we assume a negative covariance)

Within

Where:

® epa,: and ena,; are the unique parts
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Mplus code

MODEL:

SWITHINS

p_pp | dayPA ON dayPAs&l;

p_pn | dayPA ON dayNA&l;
p_np | dayNA ON dayPA&l;
p_nn | dayNA ON dayNA&l;

logvarPA | dayPA; ! RANDOM UNIQUE INNOVATION VARIANCE
logvarNA | dayNA; ! RANDOM UNIQUE INNOVATION VARIANCE

Cov BY dayPA@l dayNA@-1; ! COMMON INNOVATION VARIANCE
logCov | Cov; ! RANDOM COMMON INNOVATION VARIANCE

$BETWEENS%

P_pp WITH p pn-p nn logvarPA logvarNA logCov dayPR dayNA;
p_pn WITH p np-p_nn logvarPA logvarNA logCov dayPR dayNA;
p_np WITH p _nn logvarPA logvarNA logCov dayPA dayNA;

p_nn WITH logvarPA logvarNA logCov dayPA dayNA;

logvarPA WITH logvarNA logCov dayPA dayNA;

logvarNA WITH logCov dayPA dayNA;

logCov WITH dayPA dayNA;

dayPA WITH dayNA;
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Mplus results (younger sample)

Within Level

Between Level

[

cov BY
DAYPA
DAYNA

]

Means

DAYPA
DAYNA

p pp

P PN
P_NP
P_NN
LOGVARPA
LOGVARNA
LOGCOV

Variances
DAYPA
DAYNA
P_PP
P_PN
P_NP
P_NN
LOGVARPA
LOGVARNA
LOGCOV

Estimate

coooWw

HRrOOODOOOR

.000
.000

.095
.972
.373
.080
.030
.396
.330
-2.
-3.

038
275

.265
.605
.057
.029
.007
.065
. 692
.900
L 912

Posterior
S.D.

0.000
0.000

115
080
026
023
012
028
087
143
159

coooooo00O0

209
103
011
008
002
012
124
328
377

cooco0o0000

One-Tailed
P-Value

cocoocooooo o

coocoocoocoo

.000
.000

.000
.000
.000
.000
.006
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000
.000

95%

Lower 2.5%

HFroOOODOO OO

.000
.000

.865

817
322
036

.007
.342
.509
.326
.599

.951

447
040
018
004
047
501
395

.330

C.I.

Upper 2.5%

ocoOoHW

-2

[SENN-NeR-N-N-N-N

.000
.000

.315
.128
.423
.126
.054
-450
-160
-1.
.973

767

.754
.847
.083
.047
.012
.094
.994
.650
.800

Significance

ook b b b b b o

ok ok kb ok bk ok
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Correlated random effects (before and now)

Young sample Older sample
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Mediation model with random innovation variances
and covariance

MODEL:

SWITHIN®

p_pp | dayPA ON dayPA&l;

p pn | dayPA ON dayNA&l;
p_np | dayNA ON dayPA&l;
p_nn | dayNA ON dayNA&l;

logvarPA | dayPA; ! RANDOM UNIQUE INNOVATION VARIANCE
logvarNA | dayNA; ! RANDOM UNIQUE INNOVATION VARIANCE

Cov BY dayPA@l dayNA@-1; ! COMMON INNOVATION VARIANCE
logCov | Cov; ! RANDOM COMMON INNOVATION VARIANCE

$BETWEEN%

p_pp-p_nn dayPA dayNA ON CESDpre (al-aé);:

logvarPA logvarNA logCov ON CESDpre (a7-a9);

CESDpost ON p pp-p nn dayPA dayNA logvarPA logvarNA logCov CESDpre (bl-bl0);

model constraint:

new (ab_p pp); ab p pp=al*bl;
new (ab_p pn); ab_p pn=a2*b2;
new (ab_p_np); ab_p np=a3*b3;
new (ab_p nn); ab_p nn=ad*b4d;
new (ab_dayPA); ab_dayPA=a5*b5;
new (ab_dayNA); ab_dayNA=aé*bé;
new (ab_lvPA); ab_lvPRA=a7*b7;
new (ab_lvNA); ab_ lvNA=a8*b8;
new (ab_lCov); ab_lCov=a9*b9;
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Mplus results

Effect

Younger

Older

direct

mediated by ppa
mediated by pna
mediated by ¢pp
mediated by ¢pn
mediated by ¢np
mediated by ¢nn
mediated by log(c2p)
mediated by log(o2y)
mediated by log(—o)

0.290 [ 0.062,0.522]
0.058 [-0.011,0.154]
0.024 [-0.062,0.130]
0.003 [-0.032,0.050]
0.000 [-0.053,0.061]

-0.019 [-0.178,0.087]

0.127 [ 0.036,0.258]
0.000 [-0.059,0.055]

-0.009 [-0.103,0.076]

0.072 [ 0.004,0.185]

0.585 [ 0.076,1.206]
0.054 [-0.018,0.147]
0.011 [-0.022,0.070]
0.003 [-0.020,0.043]

-0.003 [-0.106,0.097]

-0.048 [-0.691,0.470]

-0.011 [-0.069,0.020]

-0.046 [-0.127,0.007]
0.079 [-0.015,0.212]
0.029 [-0.035,0.122]

Hence:

e higher CESDpre is associated with higher CESDpost (both samples)
o higher CESDpre predicts more carry-over in NA, which subsequently

predicts higher CESDpost (younger sample)

e higher CESDpre predicts higher log(—0o), which subsequently predicts
higher CESDpost (younger sample)
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Mediation through the random common variance

For the younger sample we have:

Posterior One-Tailed 95% C.T.

Estimate 5.D. P-Value Lower 2.5% Upper 2.5% Significance
[---]

Between Level

[---1]

LOGCOV OoN

CESDPRE 0.986 0.426 0.011 0.142 1.796 *
CESDPOST ON
[...]

LOGCOV 0.080 0.031 0.006 0.017 0.143 *

Considering three levels of CESDpre (SD of CESDpre is 0.35):

e {2SD CESDpre: log(—0o) = —2.69 — —o = 0.07 — 0 = —0.07
e +0SD CESDpre: log(—c) = —3.39 - —0 = 0.03 — 0 = —0.03
e -2SD CESDpre: log(—c) =4.09 - —o = 0.02 — 0 = —0.02

Conclusion: Higher CESDpre is associated with more negative common
variance (i.e., covariance).
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Results younger sample

Posterior
S.

[---1]
Between Leve

P_PP
CESDERE

P_EN
CESDPRE

P_NP
CESDPRE

P_NN
CESDPRE

LOGVARPA
CESDPRE

LOGVARNA
CESDPRE

LOGCOV
CESDPRE

CESDPOST
P_PP
PPN
P_NP
B_NN
LOGVARPA
LOGVARNA
LOGCOV

1

ON

ON

ON

ON

ON

ON

ON

ON

Estimate

-0

-0.
-0.
.553
.002
-0.
.080

.030

.006

.054

.241

.535

.301

-986

.210

344
548

0os

coooo0o0

D.

.069

.055

.034

.069

.239

.372

.426

.187

331
973
174
047
033

.031

One-Tailed
P-Value

cocoocooo

.328

.452

.057

.001

.014

.000

.011

.128
.146
.275
.001
-487
.399
.006

95%

Lower 2.5%

-0
-0
-2

-0
-0

.162

.116

.014

.102

.000

.576

.142

.576
.995
.575
.220
.086
.074
.017

C.I.

Upper 2.5%

cocoor oo

-109

101

119

.374

.055

.019

-796

.1le2
.306
.279
-898
.095
.056
.143

Significance
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Results younger sample (continued)

[...]
Between Level

[---]

DAYPA ON
CESDERE

DAYNA ON
CESDFPRE

CESDPOST ON
DAYPA
DAYNA
CESDPRE

Estimate

-0.121
.034
.290

oo

Posterior
.D.

s

oo

.308

.231

.033
.057
.115

One-Tailed
P-Value

0.000
0.274
0.005

-0.
-0.
.062

95%
Lower 2.5%

.117

.343

187
077

C.T.

Upper 2.5%

.097

.246

.057
.145
.522

Significance
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Results older sample

[---1

Between Leve

P_PP
CESDPRE

P_PN
CESDERE

P NP
CESDERE

P_NN
CESDPRE

LOGVARPA
CESDPRE

LOGVARNA
CESDERE

LOGCOV
CESDPRE

CESDPOST
P_PP
P_PN
P_NP
P_NN
LOGVARPA
LOGVARNA
LOGCOV

1

ON

ON

ON

ON

ON

ON

ON

ON

Estimate

.063

.203

.048

.090

.117

.356

.635

.093
-0.
-1.
-0.
-0.
.035
.020

030
169
1le8
045

Posterior
S.

8]
cooo®moo

D.

.101

.114

.019

.102

.393

.655

.608

.098
.209
.837
.102
.025
.021
.021

One-Tailed
P-Value

ocooooooQ

.26l

.037

.008

.184

.003

.000

.002

173
.441
.317
.053
.042
.045
.158

95%

Lower 2.5%

.134

.023

.010

.114

.361

.102

.424

.099
.433
.494
.368
L0985
.007
.021

C.I.

Upper 2.5%

cCo0O0®Ooo

.264

.429

.088

.291

.897

.e77

.814

.286
.408
.813
.029
.006
.076
.060

Significance
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Results older sample (continued)

[---]
Between Level

[---1

DAYPA ON
CESDPRE

DAYNA ON
CESDPRE

CESDPOST OoN
DAYPA
DAYNA
CESDPRE

Estimate

.003

.181

.028
.087
.585

Posterior
S.

[=}

D.

.490

.205

.019
.053
.292

One-Tailed
P-Value

[=}

.000

.192

.070
.047
.021

95%

Lower 2.5%

.940

.234

.065
.015
.076

Cc.I.

Upper 2.5%

.021

.578

-009
.192
-206

Significance
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Advantages of using DSEM in Mplus (thus far)

Compared to standard multilevel software:

® multiple outcome variables (with correlated residuals)

® outcomes at between-person level

® person-mean centering integral part of model estimation

Hamaker and Grasman

Centering in a multilevel autoregressive model

Table 4 | Bias and coverage rates for fixed g ¢in Itil model under diverse scenarios.
AR parameter Sample size Bias CRo.g5
N T NC Cly.,) Clz;) Clpg) NC Cly.s) Cliy) Clpy)
¢ ~ N(0.3,0.1) 20 20 0.002 —0.072 —0.069 —0.068 0.928 0.762 0.785 0.787
50 0.000 —0.027 —0.027 —0.026 0.940 0.900 0.901 0.898
100 0.000 —0.013 -0.013 —0.013 0.932 0.932 0.932 0.932
50 20 0.005 —0.071 —0.069 —0.067 0.893 0.480 0.512 0.518
50 0.001 —0.027 —0.026 —0.026 0.936 0.800 0.804 0.805
100 0.000 —0.013 -0.013 -0.013 0.946 0.902 0.902 0.903
100 20 0.006 —0.070 —0.068 —0.066 0.892 0.196 0.227 0.242
50 0.001 —0.027 —0.027 —0.027 0.930 0.623 0.630 0.637
100 0.000 -0.013 -0.013 -0.013 0.930 0.851 0.854 0.851
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Advantages of using DSEM in Mplus

All the models ran here, could also be estimated using other Bayesian
software (e.g., WinBUGS, jags, and stan).

In comparison, the advantages of Mplus are:

® easy to use due to tailor-made code

e default uninformative priors for parameters (even for small variances)

o fast (which makes a difference in case of Bayes)
Other recent developments:

® ctsem in R: Allows for continuous time modeling

® open Mx in R
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QOutline

Modeling the dynamics of ILD

Separating between-person and within-person variance

Application 1: Daily negative affect and depressive symptomatology

Application 2: Intervention study with ESM

Application 3: Dyadic daily diary data
Application 4: Latent AR(1) model

Discussion
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Intervention study with ESM

When ESM is used in a randomized controlled trial, we can investigate
whether treatment affects:

e means
¢ dynamics (e.g., autoregression)
e variability

Here we use data from individuals with a history of depression and
current residual depressive symptoms (Geschwind et al., 2011).

Each ESM period consisted of 6 days, 10 beeps per day.

We analyze data from 117 participants; 56 received a mindfulness
training between the two phases, and 61 served as controls.
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Treatment effect on the within-person mean

We use NAq; and NAs; as two separate variables!

Decomposition into a between part and a within part

Pre-treatment phase: NAj; = p1; + NAY,
Post-treatment phase: NAg; = pa; + NAS;,

Between level

p1i = Yoo + Yo1 Group; + ui;
p2i = Y10 + p1s + y11 Group; + ug;

® o1 is the initial difference between the groups
® g is the effect of time

e 1 is the effect of treatment

Note: f12; — pr1; = 10 + Y11 Group; + ug;.
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Mplus input

MODEL:
SWITHIN%
na_pre WITH na_post@0;

%BETWEEN%
na_pre ON Group:

na_post ON na_pre@l Group:
na_pre WITH na_post;

Note: When NAq; is observed, NAs;; is missing, and vice versa; hence, we

fix their within-person covariance to zero.
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Mplus results

Estimate
Within Level
NA_PRE WITH
NA_POST 0.000
Variances
NA_PRE 0.639
NA_POST 0.483
Between Level
NA_PRE ON
GROUP -0.005
NA POST ON
NA_PRE 1.000
GROUP -0.320
NA_ PRE WITH
NA POST -0.157
Intercepts
NA PRE 2.019
NA POST 0.006
Residual Variances
NA_PRE 0.524
NA_POST 0.324

Posterior

5.D.

0.000

0.012

0.009

0.136

0.000
0.108

0.04¢

0.095
0.077

0.078
0.050

One-Tailed
P-Value

o

=}

=1

=1

.000

.000

.000

.484

.000
.00z

.000

.000
L472

.000
.000

95%

Lower 2.5%

0.000

0.616

0.466

-0.292

1.000
-0.539

-0.262

1.837
-0.148

0.402
0.247

C.I.

Upper 2.5%

0.000

0.662

0.501

0.249

1.000
-0.112

-0.082

2.210
0.155

0.706
0.439

Significance
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Treatment effect on autoregression

Within level: AR(1) processes

Pre-treatment phase: NAJ; = ¢1:NAT; + Cuit
Post-treatment phase: NA%;, = ¢o;NAS, + Cou

Between level: Pre-treatment phase

H1i = Yoo + Yo1 Group; + uo;
@15 = Y10 + Y11 Group; + uy;

We expect 91 and 11 to be zero.

Between level: Post-treatment phase

W2i = Y20 + p1i + 21 Group; + ug;
$2i = Y30 + P15 + 31 Group; + us;

Where: 790 and 739 represent the effects of time and: 21 and 31
represent the effects of treatment
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Mplus results (all effects random)

Between Level

PHI2 ON
PHI1

PHI1 OoN
GROUP

PHI2 ON
GROUP

NA_PRE ON
GROUP

NA_POST ON
NA PRE
GROUP

Intercepts
NA PRE
NA POST
PHI1
PHI2

Residual Variances
NA PRE
NA_POST
PHI1
PHI2

(=== i)

.000

.052

.077

.079

.000
.246

.008

.454
.092

.450
.247
.040
.082

oo oo

oo oo

.000

.047

.066

.134

.000
.105

.092

.034
.047

.069
.044
.008
.018

oo oo

oo oo

.000

.130

.119

.284

.000
.010

.000

.000
.022

.000
.000
.000
.000

o O oo

.000

.039

.209

.340

.000
.457

.831

.390
.185

.337
.171
.027
.053

(==l -]

.000

.142

.057

.183

.000
.038

190

.522
.004

.598
.342

059
121

o ot o
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Mplus results (with fixed change in ¢)

Between Level

PHI2 ON
PHI1

PHI1 ON
GROUP

PHI2 ON
GROUP

NA_PRE ON
GROUP

NA_POST ON
NA PRE
GROUP

Intercepts
NA PRE
NA POST
PHI1
PHI2

Residual Variances
NA PRE
NA POST
PHI1
PHI2

-0.

oo oo

.000

.075

.070

.071

.000
.247

.012
-0.

010

019

.458
.261
.050
.001

oo oo

oo oo

.000

.049

.033

.132

.000
.105

.090
.071

.022

.069
.044
.009
.000

oo oo

oo oo

.000

.053

.014

.302

.000
.010

.000
.442

.199

.000
.000
.000
.000

oo oo

.000
.014
.137
.327

.000
.454

.837
.152

.062

.344
.188
.035
.001

oo oo

oo oN

.000

174

.005

.192

.000
.043

.194
.133

.026

.615
.360
.070
.001
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Including a level 1 predictor

Let UnPl; and UnPly; be variables for phases 1 and 2, that indicate
whether something emotionally charged happened since the previous beep
(positive scores is Pleasant event, negative score is Unpleasant event).

Within level
Pre-treatment phase: NA7Y,, = ¢1:NAT; + B1: UnPl;, + Cri
Post-treatment phase: NA3,, = ¢o; NAS,, + B2, UnPL,, + Cou

where:
e ¢1; and ¢o; represent carry-over

e [31; and [(3y; represent reactivity/sensitivity
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Including a level 1 predictor
At between level we include Group as predictor for pre-treatment phase:
Between level: Pre-treatment phase

H1; = Yoo + o1 Group; + uo;
®1i = v10 + Y11 Group; + uy;
B1i = Y20 + Y21 Group; + up;

where Y00, y10, and 99 are expected to be zero.

For the post-treatment phase, we model the change in mean, carry-over,
and reactivity:

Between level: Post-treatment phase
M2 = Ya0 + p1i + ya1 Group; + ug;
$2; = Y50 + P1i + Y51 Group; + us;
Ba2i = Y60 + B1i + Y61 Group; + us;

where

® Y40, Y50, and g0 represent change due to time

® 41, Y51, and g1 represent treatment effect 72/120



Mplus input:

VARIABLE:

names

cluster
usevar
lagged
within
between
tinterval
missing

DEFINE:

RANALYSIS:

Centering within predictors

ID Time PrePost Group

pa_pre pa_post na pre na post

PDLA pre PDLA post UnPl pre UnPl post
ham pre ham post ;

1D;

na_pre na_post UnPl_pre UnPl_post Group;
na pre(l) na post(1):;

UnPl_pre UnPl post;

Group;

Time (1)

all(-999);

center UnPl pre UnPl post (groupmean);

TYPE IS TWOLEVEL random; estimator=bayes;
proc = 2; biter= (2000); bseed = 5229;
thin = 10;
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Mplus input: Within and between model

Note: The within-person predictor has missings; by asking for the
variances, Mplus treats it as a y-variable, which is allowed to have missings.

MODEL:
SWITHINS
phil | na pre ON na pre&l;
betal | na_pre ON UnPl_pre;
phi2 | na post ON na postal;
betaZ | na_post ON UnPl_post;

na_pre-UnPl_post WITH na_post-UnPl_post@0;
UnPl_pre; UnPl_post;

$BETWEEN%

na_pre phil betal ON Group;
na post ON na pre@l Group;
phiZ2 ON phil@l Group;
betaZ ON betal@l Group;
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Mplus output: Regressions at Between level

Between Level

PHIZ
PHI1

BETAZ
BETAL

PHI1
GROUP

BETAL
GROUP

PHIZ
GROUP

BETAZ
GROUP

NA_PRE
GROUP

NA_POST
N2_PRE
GROUP

Group only has an effect on the change in the mean (i.e., p2; — p14)-

ON

ON

ON

ON

ON

ON

ON

ON

.00o0

.000

.050

.001

.077

.01e

.070

.000
.255

[=Jp=]

.000

.000

.046

.018

.0es

.02e

.134

-000
.105

.000

.000

-118

.470

.123

-264

.297

.000
.007

L0000

L0000

-035

.034

.214

.0es

.340

.000
.463

.000

.000

.144

.041

-053

.032

.180

.000
-05%
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Mplus output: Intercepts and random effects

Intercepts
N& PRE 2.01z2 0.091 0.000 1.835 2.18% *
NA _POST -0.014 0.071 0.422 -0.155 0.12¢
PHI1 0.423 0.033 0.000 0.357 0.487 *
BETA1 -0.123 0.013 0.000 -0.150 -0.087 *
PHI2 -0.082 0.047 0.039% -0.173 0.011
BETAZ 0.005 0.018 0.388 -0.027 0.041
Residual Variances
NA_PRE 0.466 0.070 0.000 0.355 0.632 i
NA_POST 0.268 0.042 0.000 0.1%9%9 0.359% i
PHI1 0.038 0.008 0.000 0.026 0.056 i
BETA1 0.006 0.001 0.000 0.004 0.009 i
PHIZ2 0.078 0.01eé 0.000 0.051 0.114 i
BETAZ 0.008 0.003 0.000 0.005 0.015 i
Conclusion:

e means of i1, ¢14, and 1; deviate from zero

¢ no change due to time (intercepts for o, ¢2;, and [o; are zero)
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Including a level 2 predictor

Let Hamy; and Hams; be depression scores for phases 1 and 2; these were
obtained with the Hamilton depression scale prior to each ESM episode.

Within level

Pre-treatment phase: NAJ;, = ¢1;NAT; + B1i UnPl; + Crit
Post-treatment phase: NAS;, = ¢o; NAS,, + [o2; UnPlL;, + Coit

where:
e ¢1; and ¢o; represent carry-over

e [31; and [3y; represent reactivity/sensitivity
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Including a level 2 predictor (pre-treatment)

At between level we include Group as predictor for pre-treatment phase:

Between level: Pre-treatment phase

p1i = Yoo + Yo1 Group; + ~yoa Hamy; + uo;
/BIi = Y20 —+ Y21 Groupi = 722Ham1i + U2q

Hamy; = 30 + 31 Group; + ug;

where
® 71, Y11, V21, and 31 are expected to be zero
® 702 is expected to be positive
e 19 is expected to be positive

® 799 is expected to be non-zero
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Including a level 2 predictor (post-treatment)

For the post-treatment phase, we model the change in mean, carry-over,
reactivity, and depression score:

Between level: Post-treatment phase

p2i = Y50 + p1i + 51 Group; + yso Hamg; + us;
$2i = Y60 + P1: + Y61 Group; + Ye2 Hama; + ug;
Ba2i = 10 + B1i + yr1 Group; + yraHamg; + uz;

Hamg; = g0 + Ham;1 + g1 Group; + ug;

where

® 50, Y60, Y70, and o represent change due to time

® 51, Y61, Y71, and ys1 represent direct treatment effect

® 52, Y62, and 772 represent change predicted by depression score

® g1 * 52 treatment effect on change in mean mediated through depression

® 31 % Y62 treatment effect on change in carry-over mediated through depression

® g1 * 772 treatment effect on change in reactivity mediated through depression
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Mediation of Group

Between level: Post-treatment phase

p2i = Y50 + p1i + 51 Group; + ys2 Hamg; + us;
$2i = Y60 + P1i + Y61 Group; + Ye2 Hama; + ug;
B2i = yro0 + B1i + yr1 Group; + yr2 Hama; + uz;
Hamg; = g0 + Hamy1 + g1 Group; + ug;

Group has a direct effect on the random effects (i.e., uai, ¢2;, and B2;):
® Y51
® Y61
® Y71
Group also has an indirect effect through Hamy;:
® 0on fi2;: Y81 X 752
® on ¢2;: Y81 X Y62

® on (2i: 781 X Y72
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Mplus input

MODEL:
$WITHIN%
phil | na_pre ON na preal;
betal | na_pre ON UnPl_pre;
phi2 | na post ON na postal;
beta2 | na post ON UnPl post;

na_pre-UnPl post WITH na_post-UnPl_post@0;
UnPl_pre; UnPl_post;

$BETWEEN%

ham pre ON Group;

na_pre phil betal ON Group ham pre;

na post ON na pre@l Group ham post (el-e3);
phi2 ON phil@l Group ham post (dl-d3):
beta2 ON betal@l Group ham post (b1-b3):
ham_post ON ham_pre@l Group (al-a2);

model constraint:
new (ind GDm); ind GDm=a2*e3; !indirect effect from group on change in mu
new (ind GDp):; ind GDp=a2*d3; !indirect effect from group on change in phi
effec

new (ind GDb); ind GDb=a2*b3; !indirect t from group on change in beta
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Mplus output

Between Level

PHI2 ON
PHI1

BETA2 ON
BETAL

PHI1 ON
GROUP
HAM PRE

BETAL ON
GROUP
HAM PRE

PHI2 ON
GROUF
HAM_ POST

BETA2 ON
GROUP
HAM_POST

HAM PRE ON
GROUP

NA_FRE ON
GROUP
HAM PRE

NA_POST oN
NA_PRE
GROUP
HAM POST

HAM POST  ON
HAM PRE

GROUP

.000

.047
.184

.002
.104

.050
.273

.015
.020

.028

.098
.334

.000
.180
. 641

.000
.141

.000

.045
.106

.018
.044

.065
126

.026
.049

.040

.125
.287

.000
.102
.197

.000
.049

.000

.155
.042

.461
.007

.212
.012

.281
.340

.255

.204
.000

.000
.043
.001

.000
.002

-0.
-0.

-0.
-0.

.000

043
024

033
190

177
.029

-069
.078

.054

.361
.789

.000
.384
.256

.000
.237

.000

135
.387

.039
.019

.076
.536

.034
.115

.102

.144
. 904

.000
.024
.039

.000
.043
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Mplus output

Intercepts

HAM PRE 0.592 0.028 0.000 0.538 0.647 *
HAM POST -0.049 0.033 0.075 -0.114 0.015

NA_PRE 1.208 0.190 0.000 0.849 1.596 *
NA POST -0.359 0.124 0.002 -0.604 -0.100 *
PHI1 0.319 0.073 0.000 0.177 0.456 *
BETAlL -0.061 0.029 0.020 -0.116 -0.005 *
PHI2 -0.234 0.083 0.002 -0.401 -0.082 *
BETA2 -0.004 0.032 0.466 -0.066 0.061

Residual Variances
HAM_PRE 0.046 0.006 0.000 0.035 0.061 *
HAM POST 0.067 0.009 0.000 0.052 0.089 *
NA PRE 0.380 0.057 0.000 0.290 0.507 *
NA_ POST 0.242 0.042 0.000 0.173 0.344 *
PHI1 0.036 0.007 0.000 0.025 0.052 *
BETAL 0.006 0.001 0.000 0.004 0.008 *
PHIZ2 0.073 0.015 0.000 0.048 0.108 *
BETA2 0.010 0.003 0.000 0.005 0.016 *
New/Additional Parameters

IND_GDM -0.086 0.044 0.004 -0.190 -0.019 *
IND_GDP -0.037 0.023 0.014 -0.091 -0.002 *
IND_GDB -0.002 0.007 0.341 -0.018 0.011
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Considerations about the level 2 predictors...

We just did a model with:

Between level: Post-treatment phase

H2; = Y50 + p1s + y51 Group; + ys2Hama; + us;
$2; = Yoo + P15 + Y61 Group; + ye2 Hama; + ug;
B2i = Y70 + Bii + yr1 Group; + yra Hamg; + uz;

Hamg; = g0 + Ham;i + ys1 Group; + ug;

Instead, we could use AHam; = Hamsy; — Hamy;, we get:

Between level: Post-treatment phase

H2i = Y50 + p1s + 51 Group; + ysoAHam; + us;
$2i = Y60 + P15 + Y61 Group; + ve2 A Ham; + ug;
B2i = Y70 + B1i + Y71 Group; + yroAHam; + uy;

A Ham; = 780 + 81 Group; + ug;
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Mplus input

DEFINE: center UnPl pre UnPl post (groupmean);
D_diff = ham post - ham pre;
center ham pre D diff (grandmean);

ANALYSIS: TYPE IS TWOLEVEL random; estimator=bayes;
proc = 2; biter= (2000); bseed = 8179; thin = 10;

MODEL:
$WITHIN%
phil | na pre ON na pre&l;
betal | na_pre ON UnPl_pre;
phiZ | na_post ON na postal;
betaZ | na_post ON UnPl_post:

na_pre-UnPl_post WITH na_post-UnPl_post@0;
UnPl_pre; UnPl_post;

$BETWEEN%

ham pre ON Group:

na pre phil betal ON Group ham pre;
na_post ON na_pre@l Group D_diff (el-e3);
phi2 ON phil@l Group D diff (d1-d3);
beta? ON betal@l Group D_diff (bl-b3);

D diff ON Group (a2);

model constraint:
new (ind GDm); ind GDm=a2*e3; !indirect effect from group on change in mu
new (ind GDp):; ind GDp=a2*d3; !indirect effect from group on change in phi
new (ind GDb):; ind GDb=a2*b3; !indirect effect from group on change in beta
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Mplus output

Between Level

PHI2
PHT1

BETAZ
BETAL

PHI1
GROUP
HAM PRE

BETAL
GROUP
HAM PRE

PHI2
GROUP
D_DIFF

BETA2
GROUP
D_DIFF

HAM PRE
GROUP

NA_PRE
GROUP
HAM PRE

NA POST
NA_PRE
GROUP
D DIFF

D_DIFF
GROUP

OoN

OoN

ON

OoN

ON

ON

ON

ON

.000

.000

.044
2217

.003
.109

.049
.197

.011
.014

.026

.104
.408

.000
S111
.050

.145

.000

.000

.045
.107

.019
.044

.067
.130

.025
.045

.041

121
.282

.000
.099
.183

.048

.000

.000

.163
.020

437
.007

.231
.068

.331
.370

.270

.199
.000

.000
.135
.000

.002

-0
-0

-0
-0

-0
-0

.000

.000

.045
.015

.032
.195

.180
.069

.058
.073

.058

.338
.827

.000
.299
. 685

.238

[=}

=}

oo

o

-

.000

.000

-132
-437

.041
.022

.083
-452

.037
.104

.105

.138
.948

.000
.084
.398

.051
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Mplus output

Intercepts
HAM PRE
D DIFF
NA PRE
NA_POST
PHT1
BETA1
PHI2
BETA2

Residual Variances
HAM PRE
D DIFF
NA PRE
NA_POST
PHI1
BETAL
PHI2
BETA2

-0.012
0.070
2.026

-0.081
0.426

-0.125

-0.085
0.002

-046
.067
.377
.196
037
.006
.077
.008

[=ReNeloleleNoNe)

New/Additional Parameters

IND GDM
IND GDP
IND GDB

-0.148
-0.02¢6
-0.002

[=NeloNeNolloNale]

[=NeloNeNolloNale]

.028
.034
.082
.065
.032
.013
.047
.017

-006
.009
.056
.035
.007
.001
.015
.002

.058
.022
.007

OO0 COoOO

OO0 COoOO

.333
.020
.000
.105

000

.000
.023
.46l

.000
.000
.000
.000

000

.000
.000
.000

.002
.070
.370

=N =NoNeNol=Nala]

.0e9
.003
.865
.214
.362
.151
L1981
.032

.036
.051
.283
-140

025

-004
.051
.004

.280
-0.
-0.

079
017

o000 OoONOO

[=NeNe]

[=ReNeNoleNeNeNe)

.045
137
.178
.042

486

.100
.003
.034

.060
.089
.503
.274

054

.009
L1111
.014

.0459
.009
.012

ook bk b of
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QOutline

Modeling the dynamics of ILD

Separating between-person and within-person variance

Application 1: Daily negative affect and depressive symptomatology

Application 2: Intervention study with ESM

Application 3: Dyadic daily diary data
Application 4: Latent AR(1) model

Discussion
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General and relationship specific affect

Ferrer gathered daily diary data from couples regarding their:

general positive affect that day (G-PA)
general negative affect that day (G-NA)
relationship specific positive affect that day (RS-PA)
relationship specific negative affect that day (RS-NA)

Hence, for each of the 193 dyads there are 8 variables.

They were measured on 52-108 days.
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Mplus summary of the data

SUMMARY OF DATA

Number of clusters

Size
52
53
54
55

56

57

(s)

Cluster

120
132
119
105
314
160
222
245
305
173
285
304
334
101
223
621
517
133
255
700
654
699
560
510
571
609
503
605
518
502
678
660
712
651

156
129

123
315
164
224
246
121
221
286
234

174
107
622
118

511
562
552
615
573
608
585
557

658

ID with

155
325
183
226
249
309
179
227
135

113
106

701
563
554
530
577
586
523
576

184
153
250
122
252
141
238

108
114

703
505
540
579
661

587

Size s

189

185
154
258
158
257
157
110

228

711
694
648
709
590

193

111
231
262
316
180
292
212

181

697
650
604
508

126

125
232
268
319
225
186
169

273

501
504
714
675

193

215

136
233
287
159
264
295
318

216

211
237
288

266
102
170

220

139
241
289

267
109
321

229

142
242
293

268
300
172

230

218
243
298

104
302
327

528 565 567 693 569
667 673 692 600 524 556

707 683 687 514 655

127

146
244
299

284
303
331
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Multilevel VAR(1)

Within level: Vector autoregressive model

GPAM;, $11 P12 P13 P14 P15 Pie P17 P18 CEALT Crit
GNAM, P21 P22 P23 P2a P25 P26 P27 Pos GNAM}_ C2it
RSPAM $31 é32 ¢33 ¢34 ¢35 ¢36 ¢ ¢as| | RSPAMG C3it
RSNAMG | _ | ¢a1 (a2 ¢43 daa  ¢as a6 dar  dag| | RSNAME Cait
GPAF}, | = |é51 52 ¢53 @54 @55 P56 d57 P58 GPAF}, | Csit
GNAF?, d61 P62 P63  Pes Pe5 P66 D67 D68 GNAF};,_, Coit
RSPAF, ¢71 P2 P13 Pra @15 Y6 Prv Prs| | RSPAFS | Crit
RSNAF, P81 ¢s2 P73 dsa P85 ¢se P87 dssl | RSNAFS | | Gt
v
which gives:

GPA :; = ¢11 GPAM:;_l + ¢12 GNAM;E_l + ¢)13RSPAM;Z_1 + ¢14RSNAM;;_1 +

¢15 GPAF}; 1 + p16 GNAF;;_1 + ¢17 RSPAF;_1 + p1s RSNAF}; 1 + Cua

etc.
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Multilevel VAR(1)

Within level: Residual covariance matrix

Crit
CQit NMN(O,G')*)
Csit

Hence, we estimate 8 x 8 = 64 lagged parameters, and 8 x 9/2 = 36 variances and
covariances at the within-person level.

Between level: Fixed and random effects
123Y;
21~ MN(v, @)

Mg

Hence, we estimate 8 grand means, and 8 x 9/2 = 36 variances and covariances at the

between-person level. In total: 144 parameters. 92 /120




Mplus input for multilevel VAR(1)

VARIABLE:
names =

usevar =
lagged =
cluster =
missing =

ANALYSIS:

MODEL:

SWITHIN%

dyad day

GPAM GNAM RSPAM RSNAM
GPAF GNAF RSPAF RSNAF
RelSatlM RelSatlF
RelSat2M RelSat2Fr
BrUpM BrUpF;
GPAM-RSNAF;
GPAM-RSNAF (1) ;

dyad;

all(999);

TYPE IS TWOLEVEL; estimator = bayes;
proc = 2; biter = (5000); bseed = 574;

GPAM-RSNAF ON GPAM&1-RSNAF&1;
GPAM-RSNAF WITH GPAM-RSNAF;

$BETWEEN%
GPAM-RSNAF WITH GPAM-RSNAF;

93/120



Three networks
Lagged, within-person (residual), and between-person networks:

G-PAH) (G-rAM)

Note:
® the lagged network is based on the within-person standardized lagged relationships

® the within-person residual network is based on within-person correlated residuals

® the between-person network is based on the correlated within-person means
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QOutline

Modeling the dynamics of ILD

Separating between-person and within-person variance

Application 1: Daily negative affect and depressive symptomatology

Application 2: Intervention study with ESM

Application 3: Dyadic daily diary data
Application 4: Latent AR(1) model

Discussion
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Multilevel AR factor model

Using the 10 indicators of PA from the COGITO study, we can specify a

multilevel factor model:

Decomposition

PA1, || PA2,

PA10,

Within

Between
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Multilevel latent AR(1) model

Decomposition

Vit = i + Y5

Within level: State positive affect
yis = A"SPAG + € €; ~ MN(0,0)

SPAG = ¢iSPAj 1 + (i i~ N(0,02 )

Between level: Trait positive affect

TPA; YTPA UTPA,i
@i = Y |+ | upi
2
lOQ(UC,i) Yiog Var Ulog Var,i
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Mplus input latent AR(1) model

VARIABLE:

names = ID sessdate nal na2 na3 na4 na5 na6é na7 na8 na% nalod
pal pa2 pa3 pad pab5 pa6 pal pa8 pa%9 pall sessionNr
age_pre sex CESDpre CESDpost dayNA dayPA older;

cluster = 1D;

usevar = pal-pall sessdate;

tinterval = sessdate(1);

missing = all(-999);

ANALYSIS: TYPE IS TWOLEVEL RANDOM; estimator=bayes;

proc = 2; biter = (5000); bseed = 297; thin = 10;
MODEL:
$WITHINS

FACTOR MODEL WITHIN
GIVE LABELS

LATENT ZR (1)

RANDOM INN VAR

SPA BY pal-pall (&l);

SPA BY pa2-pal0 (LW2-LW10):
phi | SPA ON SPR&l;

logVZz | SPA;

$BETWEENS
TPA BY pal-pal0 (LB1-LB10); ! FACTOR MODEL BETWEEN
TPA WITH phi; TPA phi WITH logVz;

model constraint: ! COMPARE FACTOR LOADINGS
new (difL2); difL2=LB2-LW2;

new (difL3); difL3=LB3-LW3;

new (difL4); difL4=LB4-LW4;

new (difL5); difL5=LB5-LW5;

new (difLé); difL6=LB6-LWE:

new (difL7); difL7=LB7-LW7:

new (difL8); difLE8=LB8-LW8;

new (difL9); difLS=LB9-LW9;

new (difLl10); difL10=LB10-LW10;

OUTPUT: TECH1 TECH8 STDYX;
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Mplus output: Comparing factor loadings

levels

New/Additional Parameters

DIFLZ2 -0.
DIFL3 -0.
DIFL4 -0.
DIFLS 0.
DIFLG -0.
DIFL7 -0.
DIFLS8 -0.
DIFLS -0.
DIFL10 -0.

106
118
095
361
246
202
080
223
199

[=R=NeNeNeNeNoNeNa)

.076
-089
.060
-129
.057
-076
.06l
.054
-060

OO0 0000

.090
.101
077
.002
.001
.009
.107
.000
.003

-0
-0

-0.
117
-0.
.334
-0.
-0.
-0.

.242
277

199
346
187

315
305

aCross

.0e0
.0e9
.037
.621
.121
.037
.053
.101
.0e6

Conclusion: 5 out of 10 factor loadings show evidence for being different

across levels.
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Factor loadings within-between for young-older

Factor loadings within and between for Young and Older

T ‘
7 8

9 10

14

1.2 T

08 .
0.6
04 =
0.2
0
3 4 5 6

1 2

H

YoungWithin M YoungBetween OlderWithin B OlderBetween

PA5 is the item "“stolz”

Other items: 1) enthusiastic; 2) excited; 3) strong; 4) interested; 5) proud; 6) alert; 7)
inspired; 8) determined; 9) attentive; 10) active
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Mplus output: R-square

R-SQUARE

Within-Level R-Sguare Averaged Across Clusters

Posterior One-Tailed 95% C.I.

Variable Estimate S5.D. P-Value Lower 2.5% Upper 2.5%
PAL 0.291 0.008 0.000 0.273 0.310
PA2 0.314 0.010 0.000 0.293 0.333
PA3 0.252 0.010 0.000 0.233 0.272
PAR4 0.302 0.010 0.000 0.282 0.323
PAS 0.057 0.007 0.000 0.045 0.071
PRGE 0.305 0.010 0.000 0.285 0.325
PA7 0.260 0.010 0.000 0.241 0.282
PAS 0.273 0.010 0.000 0.254 0.294
PAR9 0.366 0.010 0.000 0.346 0.386
PALO 0.339 0.010 0.000 0.319 0.360

[...]
SPA 0.549 0.012 0.000 0.525 0.573

Between Level

[...]
PAL 0.767 0.045 0.000 0.664 0.843
PA2 0.844 0.031 0.000 0.775 0.895
PA3 0.614 0.064 0.000 0.474 0.728
PAR4 0.87¢6 0.025 0.000 0.819 0.91¢
PAS 0.295 0.077 0.000 0.149 0.450
PRGE 0.872 0.027 0.000 0.811 0.914
PA7 0.835 0.033 0.000 0.757 0.889
PAS 0.947 0.013 0.000 0.917 0.966
PAR9 0.975 0.008 0.000 0.957 0.986
PALO 0.835 0.015 0.000 0.%00 0.958
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Mplus output: Correlations at between level

STDYX Standardization

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance

Between Level
[...]
TPA WITH

PHI 0.067 0.110 0.263 -0.146 0.285

LOGVZ -0.303 0.096 0.002 -0.473 -0.100 *
PHI WITH

LOGVZ -0.728 0.063 0.000 -0.828 -0.584 *
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Mplus output: Between-level plots

[[= @ |2 || ZJ Histogram for PHI mean
18 14
16
14

3 Between-level histogram for TPA, mean

1 istogram for LGV, mean

25

12

10

12
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Mplus output: Estimated factor scores for ¢;

Using the statement:
OUTPUT: TECH1 TECH8 STDYX FSCOMPARISON;
PLOT: TYPE = PLOT3; FACTOR = ALL(1000);

Results for Factor PHI

Ranking Cluster Factor Score Ranking Cluster Factor Score Ranking
1 144 1.000 2 99 0.999 3
4 156 0.994 5 132 0.989 6
7 166 0.988 8 181 0.985 9

10 53 0.979 11 87 0.969 12
13 168 0.966 14 39 0.965 15
16 157 0.949 17 94 0.942 18
19 190 0.938 20 171 0.936 21
22 142 0.926 23 163 0.924 24
25 113 0.903 26 198 0.903 27
28 170 0.894 29 92 0.890 30
31 66 0.885 32 65 0.882 33
34 108 0.877 35 40 0.874 36
37 150 0.839 38 33 0.838 39
40 199 0.820 41 47 0.813 42
43 37 0.802 44 17 0.790 45
46 133 0.775 a7 200 0.755 48
49 78 0.738 50 74 0.729 51
52 203 0.722 53 146 0.719 54
55 61 0.705 56 184 0.705 57

Cluster

193
151

90
112

Factor

Coo0oo0O00O0OO0O0OO0O0OO0OOOO0OOO

Score
996
989
981
968
958
941
931
904
896
886
878
839
823
808
776
739
725
713
700
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Estimated factor scores for SPA and observed scores

SPA, mean
)
ks

Il 5
1
2

2

3

|l

404

45.]

504

554

604

65

704

754

80

854

904

95

004

054

104

15

204

254

304

354

404

45|

”ﬂ[:
R

R T R e Al Vabibl"
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Estimated factor scores for 3 individuals

= Time series pot of: SPA, mean forID = 17 ==
05
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Multilevel latent AR(2) model
We can specify a multilevel autoregressive model of second order:
Decomposition

Vit = i + Y5

Within level:

yi = A"PAY, + €

PA:t = ¢1iPA:t—1 + ¢2iPAf,t—2 + C’zkt

Between level:

i =v+APA; + €

i Tn Un,i
ér1i | | ver Ug1,i
= +
P2 Vo2 Ug2,i
log(a?) YiogVar Uilog Var i

v
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Autoregressive parameters

2

0.5

-0.5

-1.0
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How about modeling a linear trend?

If we include time as a within level predictor in a multilevel AR model,
we can do this in two ways:

Within level with time: Time has indirect effects
PAY, = otimey + ¢1z’PA:':t_1 + J

where «; is hard to interpret.

Within level with time: Trend with AR(1) residuals
PA}, = Bitimey + af;
agy = ¢1ia;ﬁt—1 + (i

where (; is the slope of the linear trend in the process.

The two specifications are related (see Hamaker, 2005):
® ¢; will be (almost) identical
* b= 1fi¢i
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QOutline

Modeling the dynamics of ILD

Separating between-person and within-person variance

Application 1: Daily negative affect and depressive symptomatology

Application 2: Intervention study with ESM

Application 3: Dyadic daily diary data
Application 4: Latent AR(1) model

Discussion
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There is more...

DSEM in Mplus also allows for cross-classified models: observations are
nested in persons AND in occasions.

Hence, you can have:

e mean for each person (u;, average score over time); these means have a
distribution at the between-person level

e mean for each time point (u, average score across people); these means have a
distribution at the between-occasion level

You can also have:

e person-specific regression coefficients (e.g., 3;), that have distributions at the
between-person level

e time-specific regression coefficients (e.g., 3;), that have distributions at the
between-occasion level
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Input of a cross-

VARIABLE:
names =

classified model

dyad day

GPAM GNAM RSPAM RSNAM GPAF GNAF RSPAF RSNAF
RelSatlM RelSatlF RelSatZM RelSat2F BrUpM BrUpE;

usevar = GPAM;
lagged = GPAM(1):
cluster = dyad day;
missing = all(999);
ANALYSIS: TYPE IS CROSS RANDOM;
estimator = bayes; proc = 2;
biter = (3000); bseed = 1574;
MODEL:
SWITHIN%

phi | GPAM ON GPAM&l;

$BETWEEN dyad$
phi WITH GDPAM;

$BETWEEN day%

GPAM;
rhi@0;
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Cross-classified models

This approach is useful when:

® time is meaningful (e.g., days since quite smoking; trial since the beginning)

® you expect a trend (in mean or in regression coefficient), which may be in the
same direction for most participants

Using the cross-classified part allows you to explore the shape of the
trend over time.

Can be thought of as an alternative to the TVEM (time varying effect
modeling) and TVAR (time varying autoregressive modeling).

But it requires:

® longer time series (especially for random autoregressions; e.g., T>200)

® observations from multiple individuals per time point
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And more...

TITLE:

DATA:

VARIABLE:

ANALYSTS:

MODEL:

OUTPUT:

this is an example of a two-level time
series analysis with a first-order
autoregressive AR(1) IRT model for binary
factor indicators with random thresholds,
a random AR(1l) slope, and a random
esidual variance

FILE = ex9.35part2.dat;

NAMES = ul-u4 subject;

CATEGORICAL = ul-u4;

CLUSTER = subject;

TYPE = TWOLEVEL RANDOM;

ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (3000);

TWITHINS

£f BY ul-ud* (&1 1-4);

s | £ ON f&l;

logvEt | £;

$BETWEENS

fb BY ul-u4d* (1-4);

[logvf@0];

fb s logvf WITH fb s logvi;

TECH1 TECHS;
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And there will be more...

Mplus v8.1 (or v8.27) will also allow for N=1 and multilevel
regime-switching models.

Features of N=1 regime-switching models (see Kim and Nelson, 1990):

® two or more discrete states (or regimes)
® switching between these states is a hidden Markov process

® cach state is characterized by its own process: different means, autoregression,
cross-lagged regressions, etc.

Features of multilevel regime-switching models:

® switching probabilities can be random across individuals

® state-specific parameters can be random across individuals
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Example: Bipolar disorder

Bipolar disorder is characterized by severe changes in affect and activity:
Bipolar patients suffer from manic and depressed episodes.
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Discussion: Model evaluation

Model fit and model comparison are unresolved issues at this point.

Model fit: Should we focus on explained variance, covariance, or lagged
structure?

Model comparison:
e DIC is highly unreliable (check using different seeds!)
e DIC is not always comparable (see Celeux et al.)

o Bayes factors don't go well with uninformative priors
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Discussion

Venues for future research:

samples sizes (both N and T') and number of parameters
trends: to detrend or not to detrend?

distributions: how normal is normal?

model comparison

model fit
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