Dynamic Structural Equation Modeling of Intensive Longitudinal Data

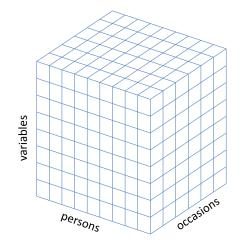
Workshop for the Multilevel Conference Utrecht

Ellen L. Hamaker *Utrecht University* e.l.hamaker@uu.nl

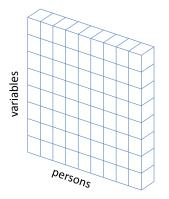
April 14, 2017

In collaboration with Bengt Muthén and Tihomir Asparouhov

Cattell's data box



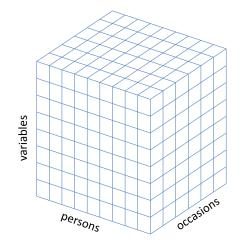
Cross-sectional research: N is large, T=1



Cross-sectional research: A single snapshot

Cross-sectional research: A single snapshot

Cattell's data box

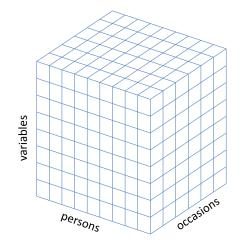


Panel research: N is large, T is small

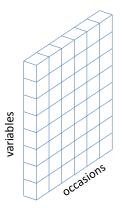
Persons occasions

Panel research: A few snapshots

Cattell's data box

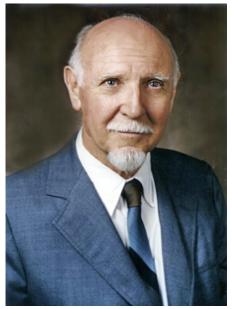


Time series data: N=1 and T is large



Time series analysis: Many snapshots

Pioneers of idiographic research in psychology



Idiographic (N=1) research in psychology

N=1 research has included:

- Cattell's P-technique: factor analysis of N=1 data
- Dynamic factor analysis: considering lagged relationships
- Measurement burst design: multiple waves of intensive measurements
- Intervention research: ABAB design etc.

Critique of this kind of research:

- within-person fluctuations are just **noise**
- results are not generalizable
- no one has these data

New technology

Intensive longitudinal data

Different forms of intensive longitudinal data:

- daily diary (DD); self-report end-of-day
- experience sampling method (ESM); self-report of subjective experience
- ecological momentary assessment (EMA); healthcare related self-report
- ambulatory assessment (AA); physiological measurements
- event-based measurements; self-report after a particular event
- observational measurements; expert rater

For more info on methodology, check out:

- Seminar of Tamlin Conner and Joshua Smyth on YouTube (https://www.youtube.com/watch?v=nQBBVp9vBIQ)
- Society for Ambulatory Assessment (http://www.saa2009.org/)
- Life Data (https://www.lifedatacorp.com/)
- Quantified Self (http://quantifiedself.com/)

Characteristics of these kind of data

Data structure:

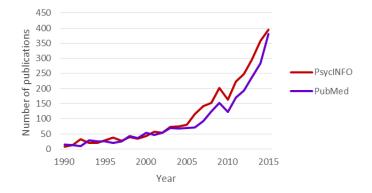
- one or more measurements per day
- typically for multiple days
- sometimes multiple waves (i.e., Nesselroade's measurement-burst design)

Advantages of ESM, EMA and AA

- no recall bias
- high ecological validity
- physiological measures over a large time span
- monitoring of symptoms and behavior, with new possibilities for feedback and intervention (e-Health and m-Health)
- window into the dynamics of processes

A paradigm shift

Publications on experience sampling, ambulatory assessment, ecological momentary assessment, or daily diary



Taken from Hamaker and Wichers (2017)

Outline

• Modeling the dynamics of ILD

- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Application 3: Dyadic daily diary data
- Application 4: Latent AR(1) model
- Discussion

What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics, seismology, meteorology, control engineering, and signal processing.

Main characteristics:

- N=1 technique
- T is large (say >50)
- concerned with *trends*, *cycles* and *autocorrelation structure* (i.e., serial dependency)
- goal: forecasting (\neq prediction)

Lags

Υ	Y at lag 1	Y at lag 2		
y_1				
y_2	y_1			
y_3	y_2	y_1		
y_4	y_3	y_2		
y_5	y_4	y_3		
y_6	y_5	y_4		
y_7	y_6	y_5		
y_8	y_7	y_6		
•••				
y_T	y_{T-1}	y_{T-2}		
	y_T	y_{T-1}		
		y_T		

Partial autocorrelation function (PACF)

Partial autocorrelation at lag k: The correlation between y_t and y_{t-k} after removing the effect of the intermediate observations (i.e., y_{t-1} to y_{t-k+1}).

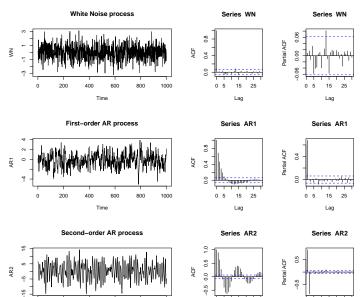
Y	Y at lag 1	Y at lag 2		
y_1				
y_2	y_1			
y_3	y_2	y_1		
y_4	y_3	y_2		
y_5	y_4	y_3		
•••				
y_T	y_{T-1}	y_{T-2}		
	y_T	y_{T-1}		
		y_T		

Sequence, ACF and PACF

200 400 600 800 1000

Time

0



0 5

25

15

Lag

22 / 120

25

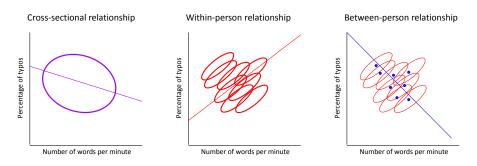
Lag

0 5 15

Outline

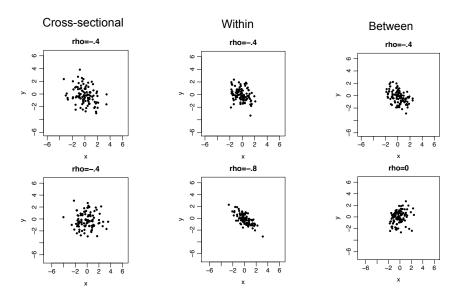
- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Application 3: Dyadic daily diary data
- Application 4: Latent AR(1) model
- Discussion

A fundamental problem in a nutshell



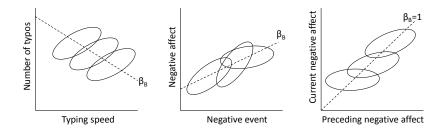
Taken from Hamaker (2012).

Three perspectives on data



Taken from Hamaker (2012).

Between-person differences in within-person slopes



Taken from Hamaker and Grasman (2014).

In conclusion: To study within-person processes we need

- (intensive) longitudinal data
- to decompose observed variance into within and between
- to consider individual differences in within-person dynamics

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Application 3: Dyadic daily diary data
- Application 4: Latent AR(1) model
- Discussion

Data: Daily measurements affect

Data come from the **COGITO study** of the MPI in Berlin; goal is to study aging using a younger and older sample.

Analyses here are based on Hamaker et al. (in preparation).

Characteristics of the younger and older sample:

- aged 20-31; aged 65-80
- 101 individuals; 103 individuals
- about 100 daily measurements of positive affect (PA) and negative affect (NA)

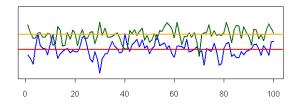
Decomposition

Decomposition into a between part and a within part

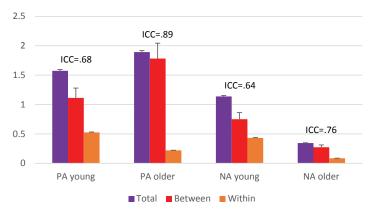
 $PA_{it} = \mu_{PA,i} + PA_{it}^*$ $NA_{it} = \mu_{NA,i} + NA_{it}^*$

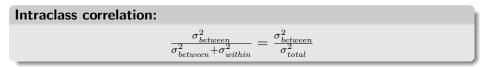
where

- $\mu_{PA,i}$ and $\mu_{NA,i}$ are the individual's **means** on PA and NA (i.e., baseline, trait, or equilibrium scores) \Rightarrow between-person part
- PA_{it}^* and NA_{it}^* are the **within-person centered** (cluster-mean centered) scores \Rightarrow within-person part

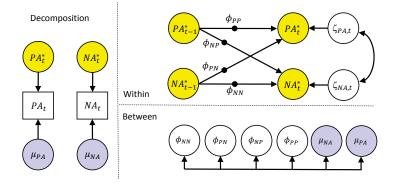


Total, between-, and within-person variance





Bivariate model: Multilevel vector AR(1) model



Within-person level model

Lagged within-person model:

$$PA_{it}^{*} = \phi_{PP,i}PA_{i,t-1}^{*} + \phi_{PN,i}NA_{i,t-1}^{*} + \zeta_{PA,it}$$
$$NA_{it}^{*} = \phi_{NN,i}NA_{i,t-1}^{*} + \phi_{NP,i}PA_{i,t-1}^{*} + \zeta_{NA,it}$$

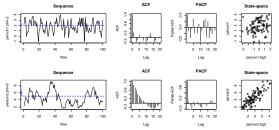
where

- $\phi_{PP,i}$ is the autoregressive parameter for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the autoregressive parameter for NA (i.e., inertia, carry-over)
- $\phi_{PN,i}$ is the cross-lagged parameter for NA to PA (i.e., spill-over)
- $\phi_{NP,i}$ is the cross-lagged parameter for PA to NA (i.e., spill-over)
- $\zeta_{PA,it}$ is the innovation for PA (residual, disturbance, dynamic error)
- $\zeta_{NA,it}$ is the **innovation** for NA (residual, disturbance, dynamic error)

Parameters estimated at this level are the residual variances and covariance:

$$\begin{bmatrix} \zeta_{PA,it} \\ \zeta_{NA,it} \end{bmatrix} \sim MN \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \theta_{11} \\ \theta_{21} & \theta_{22} \end{bmatrix} \end{bmatrix}$$

Autoregressive parameter (also known as inertia)



The AR parameter indicates how quickly a person recovers after being perturbed.

Affective inertia has been empirically related to

- neuroticism (+) and agreeableness (-) (Suls, Green & Hillis, 1998)
- concurrent depression (+) (Kuppens, Allen & Sheeber, 2010)
- future depression (+) (Kuppens, Sheeber, Yap, Whittle, Simmons & Allen, 2012)
- rumination (+) (Koval, Kuppens, Allen & Sheeber, 2012)
- self-esteem (-) (Houben, Van den Noortgate & Kuppens, 20150)
- life-satisfaction (-) (Houben et al., 2015)
- PA (-) and NA (+) (Houben et al., 2015)

Between-person level model

Between level: fixed and random effects

$$\begin{bmatrix} \mu_{PA,i} \\ \mu_{NA,i} \\ \phi_{PP,i} \\ \phi_{PN,i} \\ \phi_{NN,i} \end{bmatrix} = \begin{bmatrix} \gamma_P \\ \gamma_N \\ \gamma_{PP} \\ \gamma_{PN} \\ \gamma_{NP} \\ \gamma_{NN} \end{bmatrix} + \begin{bmatrix} u_{P,i} \\ u_{N,i} \\ u_{PP,i} \\ u_{PN,i} \\ u_{NP,i} \\ u_{NN,i} \end{bmatrix} \quad \boldsymbol{u}_i$$

 $\sim MN(\mathbf{0}, \mathbf{\Psi})$

Where:

- γ_P to $\gamma_{NN} \Rightarrow$ fixed effects
- $u_{P,i}$ to $u_{NN,i} \Rightarrow$ random effects

Parameters estimated at this level are:

- 6 fixed effects (i.e., γ 's)
- 6 variances for random effects (i.e., diagonal elements of Ψ)
- 15 covariances between the random effects (i.e., off-diagonal elements in $\Psi)$

Bivariate model: Mplus code

cluster					
lagged tinterval	<pre>= dayPA dayNA; = dayPA(1) dayNA(1); = sessdate(1); = all(-999);</pre>				
ANALYSIS:	TYPE IS TWOLEVEL random; estimator=bayes; proc = 2; fbiter= 5000; bseed = 2359; thin = 10;				
p_pn p_np	% dayPA ON dayPA&1; dayPA ON dayNA&1; dayNA ON dayPA&1; dayNA ON dayNA&1;				
<pre>%BETWEEN% p_pp WITH p_pn-p_nn dayPA dayNA; p_pn WITH p_np-p_nn dayPA dayNA; p_np WITH p_nn dayPA dayNA; p_nn WITH dayPA dayNA; dayPA WITH dayNA;</pre>					

Mplus results: Within-person (younger sample)

		Posterior	One-Tailed	95% C.I.		
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Within Leve	1					
DAYNA W DAYPA	ITH -0.069	0.004	0.000	-0.076	-0.061	*
Residual V						
DAYPA	0.414	0.006	0.000	0.403	0.426	*
DAYNA	0.302	0.004	0.000	0.294	0.311	*

Mplus results: Between-person (younger sample)

	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
[]						
Between Level						
[]						
Means						
DAYPA	3.090	0.110	0.000	2.875	3.308	*
DAYNA	0.977	0.077	0.000	0.826	1.128	*
P PP	0.334	0.026	0.000	0.283	0.387	*
P_PN	0.050	0.022	0.016	0.006	0.093	*
P NP	0.038	0.015	0.006	0.008	0.068	*
P_NN	0.370	0.027	0.000	0.315	0.423	*
Variances						
DAYPA	1.178	0.189	0.000	0.886	1.618	*
DAYNA	0.595	0.101	0.000	0.443	0.832	*
P_PP	0.055	0.010	0.000	0.039	0.079	*
P_PP P_PN P_NP P_NN P_NN	0.024	0.006	0.000	0.014	0.039	*
P_NP	0.013	0.003	0.000	0.008	0.021	*
P_NN	0.062	0.012	0.000	0.044	0.089	*

Comparing cross-lagged parameters

Standardization in multilevel models is a tricky issue.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four forms of **standardization in multilevel models**, using:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it **parallels standardizing** when N=1.

Standardized fixed effect should be the **average standardized within-person effect**.

Mplus standardized results (younger sample)

STDYX Standardization

	Estimate	Posterior S.D.	One-Tailed P-Value			Significance
Within-Level Standa	ardized Estim	ates Averag	ed Over Clus	ters		
P_PP DAYPA ON DAYPA&1	0.335	0.011	0.000	0.312	0.358	*
P_PN DAYPA ON DAYNA&1	0.034	0.013	0.006	0.008	0.059	*
P_NP DAYNA ON DAYPA&1	0.038	0.011	0.000	0.017	0.059	*
P_NN DAYNA ON DAYNA&1	0.370	0.012	0.000	0.347	0.394	*
DAYNA WITH DAYPA	-0.194	0.010	0.000	-0.213	-0.175	*
Residual Variances DAYPA DAYNA	0.816 0.792	0.008	0.000	0.799 0.775	0.832 0.808	*

Mplus standardized results (younger sample)

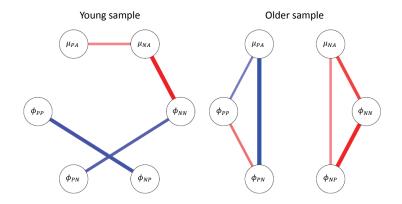
R-SQUARE

Within-Level R-Square Averaged Across Clusters

Variable	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%
DAYPA DAYNA	0.184 0.208	0.008	0.000	0.168 0.192	0.201

Between-person level: Correlated random effects

To **represent the correlation matrices** of the 6 random effects in each group, we can use the network representation (with qgraph from Sacha Epskamp in R):



Including level 2 predictor and outcome

Depression was measured prior to the ILD phase and afterwards, using the CESD; we include these measures at the between-person level as a **predictor** and an **outcome**.

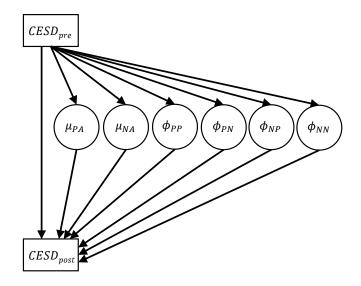
Between level: Including a level 2 predictor $\mu_{PA,i} = \gamma_{00} + \gamma_{01} CESDpre_i + u_{0i}$ $\mu_{NA,i} = \gamma_{10} + \gamma_{11} CESDpre_i + u_{1i}$ $\phi_{PP,i} = \gamma_{20} + \gamma_{21} CESDpre_i + u_{2i}$ $\phi_{PN,i} = \gamma_{30} + \gamma_{31} CESDpre_i + u_{3i}$

 $\phi_{NN,i} = \gamma_{40} + \gamma_{41} CESDpre_i + u_{4i}$ $\phi_{NP,i} = \gamma_{50} + \gamma_{51} CESDpre_i + u_{5i}$

Between level: Including a level 2 outcome

$$\begin{split} CESDpost_i &= \gamma_{60} + \gamma_{61} CESDpre_i + \gamma_{62} \mu_{PA,i} + \gamma_{63} \mu_{NA,i} \\ &+ \gamma_{64} \phi_{PP,i} + \gamma_{65} \phi_{PN,i} + \gamma_{66} \phi_{NN,i} + \gamma_{67} \phi_{NP,i} + u_{6i} \end{split}$$

Dynamic mediation model



Mplus input mediation model

VARIABLE:

names	= I	D sessdate nal na2 na3 na4 na5 na6 na7 na8 na9 na10
		pa1 pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10 sessionNr
		age_pre sex CESDpre CESDpost dayNA dayPA older;
cluster	=	ID;
usevar	=	dayPA dayNA CESDpre CESDpost;
between =		CESDpre CESDpost;
lagged	=	dayPA(1) dayNA(1);
tinterval	=	sessdate(1);
missing	=	all(-999);

DEFINE: CENTER CESDpre CESDpost (GRANDMEAN);

Mplus input mediation model

```
MODEL:
    %WTTHTN%
   p pp | dayPA ON dayPA&1;
   p pn | dayPA ON dayNA&1;
    p np | dayNA ON dayPA&1;
   p nn | dayNA ON dayNA&1;
    SETWEENS
   p pp-p nn dayPA dayNA ON CESDpre (a1-a6);
    CESDpost ON p pp-p nn dayPA dayNA CESDpre (b1-b7);
  model constraint:
  new (ab p pp); ab p pp=a1*b1;
  new (ab p pn); ab p pn=a2*b2;
  new (ab_p_np); ab_p_np=a3*b3;
  new (ab p nn); ab p nn=a4*b4;
  new (ab davPA); ab davPA=a5*b5;
  new (ab dayNA); ab dayNA=a6*b6;
```

Note that the default here is that the residuals are **not correlated**.

Mplus output mediation model (younger sample)

[] Between Level []	Estimate	Posterior S.D.			C.I. Upper 2.5%	Significance
Intercepts						
CESDPOST	0.104	0.136	0.223	-0.167	0.365	
DAYPA	3.088	0.103	0.000	2.888	3.293	*
DAYNA	0.989	0.076	0.000	0.844	1.146	*
P PP	0.338	0.024	0.000	0.289	0.386	*
PPN	0.031	0.020	0.057	-0.008	0.071	
PNP	0.035	0.014	0.006	0.007	0.062	*
PNN	0.376	0.024	0.000	0.329	0.423	*
Residual Varian CESDPOST	ces 0.067	0.012	0.000	0.048	0.095	*
DAYPA	1.049	0.158	0.000	0.798	1.416	*
DAIPA	0.517	0.091	0.000	0.377	0.729	*
P PP	0.045	0.0091	0.000	0.032	0.064	*
P PN	0.045	0.005	0.000	0.032	0.030	*
P NP	0.019	0.003	0.000	0.001	0.016	*
PNN	0.010	0.008	0.000	0.031	0.062	*
New/Additional P		0.000	0.000	0.031	0.002	
AB P PP	0.010	0.025	0.266	-0.028	0.076	
AB P PN	-0.002	0.032	0.439	-0.074	0.062	
AB_P_NP	-0.004	0.037	0.401	-0.089	0.067	
AB P NN	0.195	0.070	0.000	0.081	0.359	*
AB DAYPA	0.049	0.035	0.029	-0.001	0.135	
AB_DAYNA	0.028	0.043	0.234	-0.052	0.119	

Mplus output mediation model (older sample)

[] Between Level []	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
Intercepts						
CESDPOST	0.015	0.113	0.448	-0.210	0.236	
DAYPA	4.566	0.120	0.000	4.336	4.796	*
DAYNA	0.313			0.210		*
P PP	0.421	0.026		0.370	0.472	*
P PN	0.133			0.057		*
PNP	0.016	0.017		-0.018	0.051	
PNN	0.239	0.027	0.000	0.185	0.291	*
Residual Varianc CESDPOST	es 0.039	0.006	0.000	0.029	0.053	*
DAYPA	1.416	0.221		1.079	1.918	*
DAYNA	0.269	0.041		0.203	0.365	*
P PP	0.056	0.010	0.000	0.039	0.079	*
P PN	0.083			0.051		*
P NP	0.024	0.004		0.018	0.035	*
PNN	0.051	0.009		0.037	0.072	*
- New/Additional Pa	rameters					
AB_P_PP	0.005	0.016				
AB_P_PN	-0.004	0.025		-0.061	0.045	
AB_P_NP	0.012	0.027			0.076	
AB_P_NN	-0.036					
AB_DAYPA	0.028	0.038		-0.042	0.110	
AB_DAYNA	0.027	0.036	0.194	-0.040	0.108	

Random variance (cf. Jongerling et al., 2015)

Within level: AR(1) with random ϕ_i

 $NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it} \qquad \qquad \zeta_{it} \sim N(0,\sigma^2)$

Where ζ is the **innovation**, consisting of:

- external influences
- reactivity to external influences

Reasons to assume **individual differences** for σ^2 :

- individuals may differ with respect to the variability in exposure to external factors
- individuals may differ with respect to their **reactivity** to external influences (see reward experience and stress sensitivity research)

Hence, we allow for a **random innovation variance** using a log normal distribution.

Random innovation variance: Univariate model

Within level: AR(1) with random ϕ_i

 $NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it} \qquad \qquad \zeta_{it} \sim N(0,\sigma_i^2)$

Between level: fixed and random effects

$$\begin{array}{c} \mu_i = \gamma_\mu + u_{0i} \\ \phi_i = \gamma_\phi + u_{1i} \\ \log(\sigma_i^2) = \gamma_{\log(\sigma^2)} + u_{2i} \end{array} \begin{bmatrix} u_{0i} \\ u_{1i} \\ u_{2i} \end{bmatrix} \sim MN \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} \\ \psi_{22} \\ \psi_{31} \\ \psi_{32} \\ \psi_{33} \end{bmatrix} \end{bmatrix}$$

MODEL:

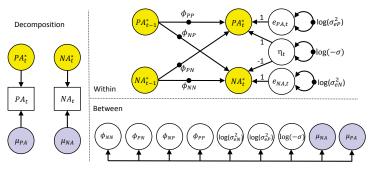
%WITHIN%
p_nn | dayNA ON dayNA&1;
logRVNA | dayNA;

%BETWEEN%
p_nn WITH logRVNA dayNA;
logRVNA WITH dayNA;

Bivariate model: Random innovation variance

In the bivariate case, we want **random innovation variances** AND **random innovation covariance**.

The latter is modeled with an additional factor η_t :



Where:

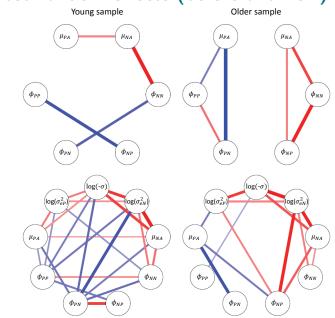
- $-\eta_t$ is the shared part (we assume a negative covariance)
- $e_{PA,t}$ and $e_{NA,t}$ are the unique parts

Mplus code

MODEL: **%WITHIN%** p pp | dayPA ON dayPA&1; p pn | dayPA ON dayNA&1; p np | dayNA ON dayPA&1; p nn | dayNA ON dayNA&1; logvarPA | dayPA; ! RANDOM UNIQUE INNOVATION VARIANCE logvarNA | davNA; ! RANDOM UNIQUE INNOVATION VARIANCE Cov BY dayPA@1 dayNA@-1; ! COMMON INNOVATION VARIANCE logCov | Cov; ! RANDOM COMMON INNOVATION VARIANCE SBETWEENS p pp WITH p pn-p nn loqvarPA loqvarNA loqCov dayPA dayNA; p pn WITH p np-p nn logvarPA logvarNA logCov dayPA dayNA; p np WITH p nn logvarPA logvarNA logCov dayPA dayNA; p nn WITH logvarPA logvarNA logCov dayPA dayNA; logvarPA WITH logvarNA logCov dayPA dayNA; logvarNA WITH logCov dayPA dayNA; logCov WITH dayPA dayNA; davPA WITH davNA;

Mplus results (younger sample)

Within Level	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
COV BY DAYPA DAYNA	1.000 -1.000	0.000	0.000	1.000 -1.000	1.000 -1.000	
Between Level []						
Means						
DAYPA	3.095	0.115	0.000	2.865	3.315	*
DAYNA	0.972	0.080	0.000	0.817	1.128	*
P PP	0.373	0.026	0.000	0.322	0.423	*
P PN	0.080	0.023	0.000	0.036	0.126	*
P NP	0.030	0.012	0.006	0.007	0.054	*
PNN	0.396	0.028	0.000	0.342	0.450	*
LOGVARPA	-1.330	0.087	0.000	-1.509	-1.160	*
LOGVARNA	-2.038	0.143	0.000	-2.326	-1.767	*
LOGCOV	-3.275	0.159	0.000	-3.599	-2.973	*
Variances						
DAYPA	1.265	0.209	0.000	0.951	1.754	*
DAYNA	0.605	0.103	0.000	0.447	0.847	*
P PP	0.057	0.011	0.000	0.040	0.083	*
PPN	0.029	0.008	0.000	0.018	0.047	*
PNP	0.007	0.002	0.000	0.004	0.012	*
PNN	0.065	0.012	0.000	0.047	0.094	*
LOGVARPA	0.692	0.124	0.000	0.501	0.994	*
LOGVARNA	1.900	0.328	0.000	1.395	2.650	*
LOGCOV	1.912	0.377	0.000	1.330	2.800	*



Correlated random effects (before and now)

Mediation model with random innovation variances and covariance

```
MODEL:
   %WTTHIN%
  p pp | dayPA ON dayPA&1;
   p pn | dayPA ON dayNA&1;
  p np | dayNA ON dayPA&1;
   p nn | dayNA ON dayNA&1;
  logvarPA | dayPA; ! RANDOM UNIQUE INNOVATION VARIANCE
   logvarNA | davNA; ! RANDOM UNIQUE INNOVATION VARIANCE
  Cov BY dayPA@1 dayNA@-1; ! COMMON INNOVATION VARIANCE
   logCov | Cov; ! RANDOM COMMON INNOVATION VARIANCE
   SBETWEENS
  p pp-p nn davPA davNA ON CESDpre (a1-a6);
   logvarPA logvarNA logCov ON CESDpre (a7-a9);
  CESDpost ON p pp-p nn davPA davNA logvarPA logvarNA logCov CESDpre (b1-b10);
model constraint:
new (ab p pp); ab p pp=a1*b1;
new (ab p pn); ab p pn=a2*b2;
new (ab p np); ab p np=a3*b3;
new (ab p nn); ab p nn=a4*b4;
new (ab davPA); ab davPA=a5*b5;
new (ab dayNA); ab dayNA=a6*b6;
new (ab lvPA); ab lvPA=a7*b7;
new (ab lvNA); ab lvNA=a8*b8;
new (ab lCov); ab lCov=a9*b9;
```

Mplus results

Effect	Younger	Older
direct	0.290 [0.062,0.522]	0.585 [0.076,1.206]
mediated by μ_{PA}	0.058 [-0.011,0.154]	0.054 [-0.018,0.147]
mediated by μ_{NA}	0.024 [-0.062,0.130]	0.011 [-0.022,0.070]
mediated by ϕ_{PP}	0.003 [-0.032,0.050]	0.003 [-0.020,0.043]
mediated by ϕ_{PN}	0.000 [-0.053,0.061]	-0.003 [-0.106,0.097]
mediated by ϕ_{NP}	-0.019 [-0.178,0.087]	-0.048 [-0.691,0.470]
mediated by ϕ_{NN}	0.127 [0.036,0.258]	-0.011 [-0.069,0.020]
mediated by $log(\sigma^2_{eP})$	0.000 [-0.059,0.055]	-0.046 [-0.127,0.007]
mediated by $log(\sigma_{eN}^2)$	-0.009 [-0.103,0.076]	0.079 [-0.015,0.212]
mediated by $log(-\sigma)$	0.072 [0.004,0.185]	0.029 [-0.035,0.122]

Hence:

- higher CESDpre is associated with higher CESDpost (both samples)
- higher CESDpre predicts more carry-over in NA, which subsequently predicts higher CESDpost (younger sample)
- higher CESD pre predicts higher $log(-\sigma)$, which subsequently predicts higher CESD post (younger sample)

Mediation through the random common variance

For the younger sample we have:

[] Between Level []	Estimate	Posterior S.D.				Significance
LOGCOV ON CESDPRE	0.986	0.426	0.011	0.142	1.796	*
CESDPOST ON [] LOGCOV	0.080	0.031	0.006	0.017	0.143	*

Considering three levels of CESDpre (SD of CESDpre is 0.35):

- +2SD CESDpre: $log(-\sigma) = -2.69 \rightarrow -\sigma = 0.07 \rightarrow \sigma = -0.07$
- ±0SD CESDpre: $log(-\sigma) = -3.39 \rightarrow -\sigma = 0.03 \rightarrow \sigma = -0.03$
- -2SD CESDpre: $log(-\sigma) = 4.09 \rightarrow -\sigma = 0.02 \rightarrow \sigma = -0.02$

Conclusion: Higher CESDpre is associated with more negative common variance (i.e., covariance).

Results younger sample

[]		Estimate		One-Tailed P-Value			Significance
Between Leve	1						
P_PP CESDPRE	ON	-0.030	0.069	0.328	-0.162	0.109	
P_PN CESDPRE	ON	-0.006	0.055	0.452	-0.116	0.101	
P_NP CESDPRE	ON	0.054	0.034	0.057	-0.014	0.119	
P_NN CESDPRE	ON	0.241	0.069	0.001	0.102	0.374	*
LOGVARPA CESDPRE	ON	-0.535	0.239	0.014	-1.000	-0.055	*
LOGVARNA CESDPRE	ON	1.301	0.372	0.000	0.576	2.019	*
LOGCOV CESDPRE	ON	0.986	0.426	0.011	0.142	1.796	*
CESDPOST P_PP P_PN P_NP P_NN LOGVARPA LOGVARNA LOGCOV		$\begin{array}{c} -0.210 \\ -0.344 \\ -0.548 \\ 0.553 \\ 0.002 \\ -0.008 \\ 0.080 \end{array}$		0.146 0.275 0.001 0.487	-0.995 -2.575 0.220 -0.086	0.306 1.279 0.898	*

Results younger sample (continued)

			Posterior	One-Tailed	95%	C.I.	
		Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
[] Between Leve []	əl						
DAYPA CESDPRE	ON	-0.509	0.308	0.050	-1.117	0.097	
DAYNA CESDPRE	ON	0.782	0.231	0.000	0.343	1.246	*
CESDPOST DAYPA DAYNA	ON	-0.121	0.033	0.000	-0.187 -0.077	-0.057 0.145	*
CESDPRE		0.290	0.115	0.005	0.062	0.522	*

Results older sample

[] Between Leve	el	Estimate		One-Tailed P-Value			Significance
P_PP CESDPRE	ON	0.063	0.101	0.261	-0.134	0.264	
P_PN CESDPRE	ON	0.203	0.114	0.037	-0.023	0.429	
P_NP CESDPRE	ON	0.048	0.019	0.008	0.010	0.088	*
P_NN CESDPRE	ON	0.090	0.102	0.184	-0.114	0.291	
LOGVARPA CESDPRE	ON	1.117	0.393	0.003	0.361	1.897	*
LOGVARNA CESDPRE	ON	2.356	0.655	0.000	1.102	3.677	*
LOGCOV CESDPRE	ON	1.635	0.608	0.002	0.424	2.814	*
CESDPOST P_PP P_FN P_NP P_NN LOGVARPA LOGVARNA LOGCOV		$\begin{array}{c} 0.093 \\ -0.030 \\ -1.169 \\ -0.168 \\ -0.045 \\ 0.035 \\ 0.020 \end{array}$	0.098 0.209 28.837 0.102 0.025 0.021 0.021	0.173 0.441 0.317 0.053 0.042 0.045 0.158	-0.099 -0.433 -12.494 -0.368 -0.095 -0.007 -0.021	0.286 0.408 8.813 0.029 0.006 0.076 0.060	

Results older sample (continued)

			Posterior	One-Tailed	95%	C.I.	
		Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
[] Between Leve []	el						
DAYPA CESDPRE	ON	-2.003	0.490	0.000	-2.940	-1.021	*
DAYNA CESDPRE	ON	0.181	0.205	0.192	-0.234	0.578	
CESDPOST DAYPA DAYNA CESDPRE	ON	-0.028 0.087 0.585	0.019 0.053 1.292	0.070 0.047 0.021	-0.065 -0.015 0.076	0.009 0.192 1.206	*

Advantages of using DSEM in Mplus (thus far)

Compared to standard multilevel software:

- multiple outcome variables (with correlated residuals)
- outcomes at between-person level
- person-mean centering integral part of model estimation

Hamaker and Grasman

Centering in a multilevel autoregressive model

AR parameter	Sample size		Bias				CR _{0.95}			
	N	т	NC	$C(\bar{y}_{\cdot i})$	C (µ̂ _i)	C (μ _i)	NC	C(ȳ.i)	C (μ̂ _i)	C (μ _i)
$\phi_{i} \sim N(0.3, 0.1)$	20	20	0.002	-0.072	-0.069	-0.068	0.928	0.762	0.785	0.787
		50	0.000	-0.027	-0.027	-0.026	0.940	0.900	0.901	0.898
		100	0.000	-0.013	-0.013	-0.013	0.932	0.932	0.932	0.932
	50	20	0.005	-0.071	-0.069	-0.067	0.893	0.480	0.512	0.518
		50	0.001	-0.027	-0.026	-0.026	0.936	0.800	0.804	0.805
		100	0.000	-0.013	-0.013	-0.013	0.946	0.902	0.902	0.903
	100	20	0.006	-0.070	-0.068	-0.066	0.892	0.196	0.227	0.242
		50	0.001	-0.027	-0.027	-0.027	0.930	0.623	0.630	0.637
		100	0.000	-0.013	-0.013	-0.013	0.930	0.851	0.854	0.851

Table 4 | Bias and coverage rates for fixed autoregressive parameter ϕ in multilevel autoregressive model under diverse scenarios.

Advantages of using DSEM in Mplus

All the models ran here, could also be estimated using other **Bayesian software** (e.g., WinBUGS, jags, and stan).

In comparison, the advantages of Mplus are:

- easy to use due to tailor-made code
- default uninformative priors for parameters (even for small variances)
- fast (which makes a difference in case of Bayes)

Other recent developments:

- ctsem in R: Allows for continuous time modeling
- open Mx in R

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Application 3: Dyadic daily diary data
- Application 4: Latent AR(1) model
- Discussion

Intervention study with ESM

When **ESM** is used in a **randomized controlled trial**, we can investigate whether treatment affects:

- means
- dynamics (e.g., autoregression)
- variability

Here we use data from individuals with a **history of depression** and current residual depressive symptoms (Geschwind et al., 2011).

Each ESM period consisted of 6 days, 10 beeps per day.

We analyze data from 117 participants; 56 received a **mindfulness training** between the two phases, and 61 served as **controls**.

Treatment effect on the within-person mean

We use NA_{1it} and NA_{2it} as two separate variables!

Decomposition into a between part and a within part

Pre-treatment phase: $NA_{1it} = \mu_{1i} + NA_{1it}^*$ Post-treatment phase: $NA_{2it} = \mu_{2i} + NA_{2it}^*$

Between level

 $\mu_{1i} = \gamma_{00} + \gamma_{01} Group_i + u_{1i}$ $\mu_{2i} = \gamma_{10} + \mu_{1i} + \gamma_{11} Group_i + u_{2i}$

- γ_{01} is the **initial difference** between the groups
- γ_{10} is the effect of time
- γ_{11} is the effect of treatment

Note: $\mu_{2i} - \mu_{1i} = \gamma_{10} + \gamma_{11} Group_i + u_{2i}$.

Mplus input

```
MODEL:
    %WITHIN%
    na_pre WITH na_post@0;
    %BETWEEN%
    na_pre ON Group;
    na_post ON na_pre@1 Group;
    na pre WITH na post;
```

Note: When NA_{1it} is observed, NA_{2it} is missing, and vice versa; hence, we fix their within-person **covariance to zero**.

Mplus results

	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
Within Level						
NA_PRE WITH NA_POST	0.000	0.000	1.000	0.000	0.000	
Variances NA_PRE NA_POST	0.639 0.483	0.012	0.000	0.616 0.466	0.662 0.501	*
Between Level						
NA_PRE ON GROUP	-0.005	0.136	0.484	-0.292	0.249	
NA_POST ON NA_PRE GROUP	1.000 -0.320	0.000 0.108	0.000 0.002	1.000 -0.539	1.000 -0.112	*
NA_PRE WITH NA_POST	-0.157	0.046	0.000	-0.262	-0.082	*
Intercepts NA_PRE NA_POST	2.019 0.006	0.095 0.077	0.000 0.472	1.837 -0.148	2.210 0.155	*
Residual Variances NA_PRE NA_POST	0.524 0.324	0.078 0.050	0.000	0.402	0.706 0.439	*

Treatment effect on autoregression

Within level: AR(1) processes

Pre-treatment phase: $NA_{1it}^* = \phi_{1i}NA_{1it}^* + \zeta_{1it}$ Post-treatment phase: $NA_{2it}^* = \phi_{2i}NA_{2it}^* + \zeta_{2it}$

Between level: Pre-treatment phase

 $\mu_{1i} = \gamma_{00} + \gamma_{01} \operatorname{Group}_i + u_{0i}$ $\phi_{1i} = \gamma_{10} + \gamma_{11} \operatorname{Group}_i + u_{1i}$

We expect γ_{01} and γ_{11} to be zero.

Between level: Post-treatment phase

 $\mu_{2i} = \gamma_{20} + \mu_{1i} + \gamma_{21} Group_i + u_{2i}$ $\phi_{2i} = \gamma_{30} + \phi_{1i} + \gamma_{31} Group_i + u_{3i}$

Where: γ_{20} and γ_{30} represent the effects of time and: γ_{21} and γ_{31} represent the effects of treatment

Mplus results (all effects random)

Between Level

PHI2 PHI1	ON	1.000	0.000	0.000	1.000	1.000	
PHI1 GROUP	ON	0.052	0.047	0.130	-0.039	0.142	
PHI2 GROUP	ON	-0.077	0.066	0.119	-0.209	0.057	
NA_PRE GROUP	ON	-0.079	0.134	0.284	-0.340	0.183	
NA_POST NA_PRE GROUP	ON	1.000 -0.246	0.000 0.105	0.000 0.010	1.000 -0.457	1.000 -0.038	*
Intercepts NA_PRE NA_POST PHI1 PHI2		2.008 -0.005 0.454 -0.092	0.092 0.071 0.034 0.047	0.000 0.470 0.000 0.022	1.831 -0.148 0.390 -0.185	2.190 0.136 0.522 -0.004	* *
Residual V NA_PRE NA_POST PHI1 PHI2		0.450 0.247 0.040 0.082	0.069 0.044 0.008 0.018	0.000 0.000 0.000 0.000	0.337 0.171 0.027 0.053	0.598 0.342 0.059 0.121	* * *

Mplus results (with fixed change in ϕ)

Between Level

PHI2 PHI1	ON	1.000	0.000	0.000	1.000	1.000	
PHI1 GROUP	ON	0.075	0.049	0.053	-0.014	0.174	
PHI2 GROUP	ON	-0.070	0.033	0.014	-0.137	-0.005	*
NA_PRE GROUP	ON	-0.071	0.132	0.302	-0.327	0.192	
NA_POST NA_PRE GROUP	ON	1.000 -0.247	0.000 0.105	0.000 0.010	1.000 -0.454	1.000 -0.043	*
Intercepts NA_PRE NA_POST PHI1 PHI2		2.012 -0.010 0.425 -0.019	0.090 0.071 0.034 0.022	0.000 0.442 0.000 0.199	1.837 -0.152 0.356 -0.062	2.194 0.133 0.491 0.026	*
Residual V NA_PRE NA_POST PHI1 PHI2		0.458 0.261 0.050 0.001	0.069 0.044 0.009 0.000	0.000 0.000 0.000 0.000	0.344 0.188 0.035 0.001	0.615 0.360 0.070 0.001	* * *

Including a level 1 predictor

Let $UnPl_{1it}$ and $UnPl_{2it}$ be variables for phases 1 and 2, that indicate whether something emotionally charged happened since the previous beep (positive scores is Pleasant event, negative score is Unpleasant event).

Within level

Pre-treatment phase: $NA_{1it}^* = \phi_{1i}NA_{1it}^* + \beta_{1i}UnPl_{1it}^* + \zeta_{1it}$ Post-treatment phase: $NA_{2it}^* = \phi_{2i}NA_{2it}^* + \beta_{2i}UnPl_{2it}^* + \zeta_{2it}$

where:

- ϕ_{1i} and ϕ_{2i} represent carry-over
- β_{1i} and β_{2i} represent reactivity/sensitivity

Including a level 1 predictor

At between level we include Group as predictor for pre-treatment phase:

Between level: Pre-treatment phase

 $\mu_{1i} = \gamma_{00} + \gamma_{01} \operatorname{Group}_i + u_{0i}$ $\phi_{1i} = \gamma_{10} + \gamma_{11} \operatorname{Group}_i + u_{1i}$ $\beta_{1i} = \gamma_{20} + \gamma_{21} \operatorname{Group}_i + u_{2i}$

where γ_{00} , γ_{10} , and γ_{20} are expected to be zero.

For the post-treatment phase, we model the change in mean, carry-over, and reactivity:

Between level: Post-treatment phase

$$\mu_{2i} = \gamma_{40} + \mu_{1i} + \gamma_{41} Group_i + u_{4i} \phi_{2i} = \gamma_{50} + \phi_{1i} + \gamma_{51} Group_i + u_{5i} \beta_{2i} = \gamma_{60} + \beta_{1i} + \gamma_{61} Group_i + u_{6i}$$

where

- $\gamma_{40},\,\gamma_{50},\,{\rm and}\,\,\gamma_{60}$ represent change due to time
- γ_{41} , γ_{51} , and γ_{61} represent treatment effect

Mplus input: Centering within predictors

VARIABLE:

names	=	ID Time PrePost Group pa_pre pa_post na_pre na_post PDLA_pre PDLA_post UnPl_pre UnPl_post ham pre ham post ;
cluster	=	ID;
usevar	=	<pre>na pre na post UnPl pre UnPl post Group;</pre>
lagged	=	na pre(1) na post(1);
within	=	UnPl_pre UnPl_post;
between	=	Group;
tinterval	=	Time(1);
missing	=	all(-999);
DEFINE: ce	nter	<pre>UnPl_pre UnPl_post (groupmean);</pre>
ANALYSIS:	pro	E IS TWOLEVEL random; estimator=bayes; c = 2; biter= (2000); bseed = 5229; n = 10;

Mplus input: Within and between model

Note: The within-person predictor has missings; by asking for the variances, Mplus treats it as a y-variable, which is allowed to have missings.

```
MODEL:

%WITHIN%

phi1 | na_pre ON na_pre&1;

beta1 | na_pre ON UnPl_pre;

phi2 | na_post ON na_post&1;

beta2 | na_post ON UnPl_post;

na_pre-UnPl_post WITH na_post-UnPl_post@0;

UnPl_pre; UnPl_post;

%BETWEEN%

na_pre phi1 beta1 ON Group;

na_post ON na_pre@1 Group;

phi2 ON phi1@1 Group;

beta2 ON beta1@1 Group;
```

Mplus output: Regressions at Between level

Between Level

PHI2 PHI1	ON	1.000	0.000	0.000	1.000	1.000
BETA2 BETA1	ON	1.000	0.000	0.000	1.000	1.000
PHI1 GROUP	ON	0.050	0.046	0.119	-0.035	0.144
BETA1 GROUP	ON	0.001	0.019	0.470	-0.034	0.041
PHI2 GROUP	ON	-0.077	0.068	0.123	-0.214	0.053
BETA2 GROUP	ON	-0.016	0.026	0.264	-0.069	0.032
NA_PRE GROUP	ON	-0.070	0.134	0.297	-0.340	0.180
NA_POST NA_PRE GROUP	ON	1.000 -0.255	0.000 0.105	0.000	1.000 -0.463	1.000 -0.059

Group only has an effect on the change in the mean (i.e., $\mu_{2i} - \mu_{1i}$).

*

Mplus output: Intercepts and random effects

Intercepts						
NA PRE	2.012	0.091	0.000	1.835	2.189	*
NA POST	-0.014	0.071	0.422	-0.155	0.126	
PHI1	0.423	0.033	0.000	0.357	0.487	*
BETA1	-0.123	0.013	0.000	-0.150	-0.097	*
PHI2	-0.082	0.047	0.039	-0.173	0.011	
BETA2	0.005	0.018	0.388	-0.027	0.041	
Residual Variance	es					
NA_PRE	0.466	0.070	0.000	0.355	0.632	*
NA_POST	0.268	0.042	0.000	0.199	0.359	*
PHI1	0.038	0.008	0.000	0.026	0.056	*
BETA1	0.006	0.001	0.000	0.004	0.009	*
PHI2	0.078	0.016	0.000	0.051	0.114	*
BETA2	0.008	0.003	0.000	0.005	0.015	*

Conclusion:

- means of μ_{1i} , ϕ_{1i} , and β_{1i} deviate from zero
- no change due to time (intercepts for μ_{2i} , ϕ_{2i} , and β_{2i} are zero)

Including a level 2 predictor

Let Ham_{1i} and Ham_{2i} be depression scores for phases 1 and 2; these were obtained with the Hamilton depression scale prior to each ESM episode.

Within level

Pre-treatment phase: $NA_{1it}^* = \phi_{1i}NA_{1it}^* + \beta_{1i}UnPl_{1it}^* + \zeta_{1it}$ Post-treatment phase: $NA_{2it}^* = \phi_{2i}NA_{2it}^* + \beta_{2i}UnPl_{2it}^* + \zeta_{2it}$

where:

- ϕ_{1i} and ϕ_{2i} represent carry-over
- β_{1i} and β_{2i} represent reactivity/sensitivity

Including a level 2 predictor (pre-treatment)

At between level we include Group as predictor for pre-treatment phase:

Between level: Pre-treatment phase

$$\begin{aligned} \mu_{1i} &= \gamma_{00} + \gamma_{01} Group_i + \gamma_{02} Ham_{1i} + u_{0i} \\ \phi_{1i} &= \gamma_{10} + \gamma_{11} Group_i + \gamma_{12} Ham_{1i} + u_{1i} \\ \beta_{1i} &= \gamma_{20} + \gamma_{21} Group_i + \gamma_{22} Ham_{1i} + u_{2i} \\ Ham_{1i} &= \gamma_{30} + \gamma_{31} Group_i + u_{3i} \end{aligned}$$

where

- $\gamma_{01}, \, \gamma_{11}, \, \gamma_{21},$ and γ_{31} are expected to be zero
- γ_{02} is expected to be positive
- γ_{12} is expected to be positive
- γ_{22} is expected to be non-zero

Including a level 2 predictor (post-treatment)

For the post-treatment phase, we model the change in mean, carry-over, reactivity, and depression score:

Between level: Post-treatment phase

$$\begin{split} \mu_{2i} &= \gamma_{50} + \mu_{1i} + \gamma_{51} Group_i + \gamma_{52} Ham_{2i} + u_{5i} \\ \phi_{2i} &= \gamma_{60} + \phi_{1i} + \gamma_{61} Group_i + \gamma_{62} Ham_{2i} + u_{6i} \\ \beta_{2i} &= \gamma_{70} + \beta_{1i} + \gamma_{71} Group_i + \gamma_{72} Ham_{2i} + u_{7i} \\ Ham_{2i} &= \gamma_{80} + Ham_{i1} + \gamma_{81} Group_i + u_{8i} \end{split}$$

where

- γ_{50} , γ_{60} , γ_{70} , and γ_{80} represent change due to time
- $\gamma_{51}\text{, }\gamma_{61}\text{, }\gamma_{71}\text{, and }\gamma_{81}$ represent direct treatment effect
- $\gamma_{52}\text{, }\gamma_{62}\text{, and }\gamma_{72}$ represent change predicted by depression score
- $\gamma_{81}*\gamma_{52}$ treatment effect on change in mean mediated through depression
- $\gamma_{81}*\gamma_{62}$ treatment effect on change in carry-over mediated through depression
- $\gamma_{81}*\gamma_{72}$ treatment effect on change in reactivity mediated through depression

Mediation of Group

Between level: Post-treatment phase

$$\begin{split} \mu_{2i} &= \gamma_{50} + \mu_{1i} + \gamma_{51} Group_i + \gamma_{52} Ham_{2i} + u_{5i} \\ \phi_{2i} &= \gamma_{60} + \phi_{1i} + \gamma_{61} Group_i + \gamma_{62} Ham_{2i} + u_{6i} \\ \beta_{2i} &= \gamma_{70} + \beta_{1i} + \gamma_{71} Group_i + \gamma_{72} Ham_{2i} + u_{7i} \\ Ham_{2i} &= \gamma_{80} + Ham_{i1} + \gamma_{81} Group_i + u_{8i} \end{split}$$

Group has a direct effect on the random effects (i.e., μ_{2i} , ϕ_{2i} , and β_{2i}):

- γ_{51}
- γ_{61}
- γ₇₁

Group also has an indirect effect through Ham_{2i} :

- on μ_{2i} : $\gamma_{81} \times \gamma_{52}$
- on ϕ_{2i} : $\gamma_{81} \times \gamma_{62}$
- on β_{2i} : $\gamma_{81} \times \gamma_{72}$

Mplus input

```
MODEL:
    SWITTHINS
    phi1 | na pre ON na pre&1;
    beta1 | na pre ON UnPl pre;
    phi2 | na post ON na post&1;
    beta2 | na post ON UnPl post;
    na pre-UnPl post WITH na post-UnPl post@0;
    UnPl pre; UnPl post;
    $BETWEEN$
    ham pre ON Group;
    na pre phil betal ON Group ham pre;
    na post ON na pre@1 Group ham post (e1-e3);
    phi2 ON phi101 Group ham post (d1-d3);
    beta2 ON beta1@1 Group ham post (b1-b3);
    ham post ON ham pre@1 Group (a1-a2);
model constraint:
    new (ind GDm); ind GDm=a2*e3; !indirect effect from group on change in mu
    new (ind GDp); ind GDp=a2*d3; !indirect effect from group on change in phi
    new (ind GDb); ind GDb=a2*b3; !indirect effect from group on change in beta
```

Mplus output

PHI	I2 PHI1	ON	1.000	0.000	0.000	1.000	1.000	
	FA2 BETA1	ON	1.000	0.000	0.000	1.000	1.000	
PHI	I1 GROUP HAM PRE	ON	0.047	0.045	0.155	-0.043	0.135	
BEI	-	ON	0.002	0.018	0.461	-0.033	0.039	*
PHI	_	ON	-0.050		0.212		0.076	*
BEI	– IA2 GROUP	ON	-0.015		0.281	-0.069	0.034	
HAN	HAM_POST 1_PRE GROUP	ON	0.020		0.255	-0.054	0.102	
NA_	_PRE GROUP HAM_PRE	ON	-0.098 1.334	0.125 0.287	0.204	-0.361 0.789	0.144 1.904	*
	POST NA_PRE GROUP		1.000	0.102		1.000	1.000	
HAN	HAM_POST 1_POST HAM_PRE	ON	0.641	0.197		1.000	1.039	*
	GROUP		-0.141	0.049	0.002	-0.237	-0.043	*

Mplus output

Intercepts						
HAM PRE	0.592	0.028	0.000	0.538	0.647	*
HAM POST	-0.049	0.033	0.075	-0.114	0.015	
NA PRE	1.208	0.190	0.000	0.849	1.596	*
NA POST	-0.359	0.124	0.002	-0.604	-0.100	*
PHI1	0.319	0.073	0.000	0.177	0.456	*
BETA1	-0.061	0.029	0.020	-0.116	-0.005	*
PHI2	-0.234	0.083	0.002	-0.401	-0.082	*
BETA2	-0.004	0.032	0.466	-0.066	0.061	
Residual Variar	ices					
HAM PRE	0.046	0.006	0.000	0.035	0.061	*
HAM POST	0.067	0.009	0.000	0.052	0.089	*
NA PRE	0.380	0.057	0.000	0.290	0.507	*
NA POST	0.242	0.042	0.000	0.173	0.344	*
PHI1	0.036	0.007	0.000	0.025	0.052	*
BETA1	0.006	0.001	0.000	0.004	0.008	*
PHI2	0.073	0.015	0.000	0.048	0.108	*
BETA2	0.010	0.003	0.000	0.005	0.016	*
New/Additional H	Parameters					
IND GDM	-0.086	0.044	0.004	-0.190	-0.019	*
IND GDP	-0.037	0.023	0.014	-0.091	-0.002	*
IND_GDB	-0.002	0.007	0.341	-0.018	0.011	

Considerations about the level 2 predictors...

We just did a model with:

Between level: Post-treatment phase

$$\begin{split} \mu_{2i} &= \gamma_{50} + \mu_{1i} + \gamma_{51} Group_i + \gamma_{52} Ham_{2i} + u_{5i} \\ \phi_{2i} &= \gamma_{60} + \phi_{1i} + \gamma_{61} Group_i + \gamma_{62} Ham_{2i} + u_{6i} \\ \beta_{2i} &= \gamma_{70} + \beta_{1i} + \gamma_{71} Group_i + \gamma_{72} Ham_{2i} + u_{7i} \\ Ham_{2i} &= \gamma_{80} + Ham_{i1} + \gamma_{81} Group_i + u_{8i} \end{split}$$

Instead, we could use $\Delta Ham_i = Ham_{2i} - Ham_{1i}$, we get:

Between level: Post-treatment phase

$$\mu_{2i} = \gamma_{50} + \mu_{1i} + \gamma_{51} Group_i + \gamma_{52} \Delta Ham_i + u_{5i} \phi_{2i} = \gamma_{60} + \phi_{1i} + \gamma_{61} Group_i + \gamma_{62} \Delta Ham_i + u_{6i} \beta_{2i} = \gamma_{70} + \beta_{1i} + \gamma_{71} Group_i + \gamma_{72} \Delta Ham_i + u_{7i} \Delta Ham_i = \gamma_{80} + \gamma_{81} Group_i + u_{8i}$$

Mplus input

```
DEFINE: center UnPl pre UnPl post (groupmean);
         D diff = ham post - ham pre;
         center ham pre D diff (grandmean);
ANALYSIS: TYPE IS TWOLEVEL random; estimator=bayes;
            proc = 2; biter= (2000); bseed = 8179; thin = 10;
MODEL:
    WTTHINS
    phi1 | na pre ON na pre&1;
    betal | na pre ON UnPl pre;
    phi2 | na post ON na post&1;
    beta2 | na post ON UnPl post;
    na pre-UnPl post WITH na post-UnPl post@0;
    UnPl pre; UnPl post;
    SBETWEENS
    ham pre ON Group;
    na pre phil betal ON Group ham pre;
    na post ON na pre@1 Group D diff (e1-e3);
    phi2 ON phi1@1 Group D diff (d1-d3);
    beta2 ON beta101 Group D diff (b1-b3);
    D diff ON Group (a2);
model constraint:
    new (ind GDm); ind GDm=a2*e3; !indirect effect from group on change in mu
    new (ind GDp); ind GDp=a2*d3; !indirect effect from group on change in phi
    new (ind GDb); ind GDb=a2*b3; !indirect effect from group on change in beta
```

 $\underset{{}_{\text{Between Level}}}{\text{Mplus output}}$

ON

DUTO

PHI2 PHI1	ON	1.000	0.000	0.000	1.000	1.000	
BETA2 BETA1	ON	1.000	0.000	0.000	1.000	1.000	
PHI1 GROUP HAM_PRE	ON	0.044 0.217	0.045 0.107	0.163 0.020	-0.045 0.015	0.132 0.437	*
BETA1 GROUP HAM_PRE	ON	0.003 -0.109	0.019 0.044		-0.032 -0.195		*
PHI2 GROUP D_DIFF	ON	-0.049 0.197	0.067 0.130	0.231 0.068	-0.180 -0.069	0.083 0.452	
BETA2 GROUP D_DIFF	ON	-0.011 0.014	0.025 0.045	0.331 0.370	-0.058 -0.073	0.037 0.104	
HAM_PRE GROUP	ON	0.026	0.041	0.270	-0.058	0.105	
NA_PRE GROUP HAM_PRE	ON	-0.104 1.408	0.121 0.282	0.199 0.000	-0.338 0.827	0.138 1.948	*
NA_POST NA_PRE GROUP D_DIFF	ON	1.000 -0.111 1.050	0.000 0.099 0.183		1.000 -0.299 0.685	1.000 0.084 1.398	*
D_DIFF GROUP	ON	-0.145	0.048	0.002	-0.238	-0.051	*

86 / 120

Mplus output

Intercepts									
HAM_PRE	-0.012	0.028	0.333	-0.069	0.045				
D_DIFF	0.070	0.034	0.020	0.003	0.137	*			
NA PRE	2.026	0.082	0.000	1.865	2.178	*			
NA POST	-0.081	0.065	0.105	-0.214	0.042				
PHI1	0.426	0.032	0.000	0.362	0.486	*			
BETA1	-0.125	0.013	0.000	-0.151	-0.100	*			
PHI2	-0.095	0.047	0.023	-0.191	-0.003	*			
BETA2	0.002	0.017	0.461	-0.032	0.034				
Residual Variances									
HAM PRE	0.046	0.006	0.000	0.036	0.060	*			
D DIFF	0.067	0.009	0.000	0.051	0.089	*			
NA PRE	0.377	0.056	0.000	0.283	0.503	*			
NA POST	0.196	0.035	0.000	0.140	0.274	*			
PHI1	0.037	0.007	0.000	0.025	0.054	*			
BETA1	0.006	0.001	0.000	0.004	0.009	*			
PHI2	0.077	0.015	0.000	0.051	0.111	*			
BETA2	0.008	0.002	0.000	0.004	0.014	*			
New/Additional Pa	rameters								
IND GDM	-0.148	0.058	0.002	-0.280	-0.049	*			
IND GDP	-0.026	0.022	0.070	-0.079	0.009				
IND GDB	-0.002	0.007	0.370	-0.017	0.012				
			2.270		1.010				

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Application 3: Dyadic daily diary data
- Application 4: Latent AR(1) model
- Discussion

General and relationship specific affect

Ferrer gathered daily diary data from couples regarding their:

- general positive affect that day (G-PA)
- general negative affect that day (G-NA)
- relationship specific positive affect that day (RS-PA)
- relationship specific negative affect that day (RS-NA)

Hence, for each of the 193 dyads there are 8 variables. They were measured on 52-108 days.

Mplus summary of the data

SUMMARY OF DATA

Multilevel VAR(1)

Within level: Vector autoregressive model											
$\begin{bmatrix} GPAM_{it}^{*}\\ GNAM_{it}^{*}\\ RSPAM_{it}^{*}\\ RSNAM_{it}^{*}\\ GPAF_{it}^{*}\\ GNAF_{it}^{*}\\ RSPAF_{it}^{*}\\ RSNAF_{it}^{*} \end{bmatrix} =$	$ \begin{bmatrix} \phi_{11} \\ \phi_{21} \\ \phi_{31} \\ \phi_{41} \\ \phi_{51} \\ \phi_{61} \\ \phi_{71} \\ \phi_{81} \end{bmatrix} $	$\phi_{12} \\ \phi_{22} \\ \phi_{32} \\ \phi_{42} \\ \phi_{52} \\ \phi_{62} \\ \phi_{72} \\ \phi_{82}$	$\phi_{13} \\ \phi_{23} \\ \phi_{33} \\ \phi_{43} \\ \phi_{53} \\ \phi_{63} \\ \phi_{73} \\ \phi_{73}$	$\phi_{14} \\ \phi_{24} \\ \phi_{34} \\ \phi_{44} \\ \phi_{54} \\ \phi_{64} \\ \phi_{74} \\ \phi_{84}$	$\phi_{15} \\ \phi_{25} \\ \phi_{35} \\ \phi_{45} \\ \phi_{55} \\ \phi_{65} \\ \phi_{75} \\ \phi_{85}$	$\phi_{16} \\ \phi_{26} \\ \phi_{36} \\ \phi_{46} \\ \phi_{56} \\ \phi_{66} \\ \phi_{76} \\ \phi_{86}$	φ17 φ27 φ37 φ47 φ57 φ67 φ77 φ87	$\phi_{18} \\ \phi_{28} \\ \phi_{38} \\ \phi_{48} \\ \phi_{58} \\ \phi_{68} \\ \phi_{78} \\ \phi_{88} \end{bmatrix}$	$\begin{bmatrix} GPAM_{it-1}^* \\ GNAM_{it-1}^* \\ RSPAM_{it-1}^* \\ RSNAM_{it-1}^* \\ GPAF_{it-1}^* \\ GNAF_{it-1}^* \\ RSPAF_{it-1}^* \\ RSNAF_{it-1}^* \end{bmatrix}$	+	$\begin{bmatrix} \zeta_1 it \\ \zeta_2 it \\ \zeta_3 it \\ \zeta_4 it \\ \zeta_5 it \\ \zeta_6 it \\ \zeta_7 it \\ \zeta_8 it \end{bmatrix}$

which gives:

 $\begin{aligned} & GPAM^*_{it} = \phi_{11} GPAM^*_{it-1} + \phi_{12} GNAM^*_{it-1} + \phi_{13} RSPAM^*_{it-1} + \phi_{14} RSNAM^*_{it-1} + \\ & \phi_{15} GPAF^*_{it-1} + \phi_{16} GNAF^*_{it-1} + \phi_{17} RSPAF^*_{it-1} + \phi_{18} RSNAF^*_{it-1} + \zeta_{1it} \\ & \text{etc.} \end{aligned}$

Multilevel VAR(1)

Within level: Residual covariance matrix

$$\begin{bmatrix} \zeta_{1it} \\ \zeta_{2it} \\ \dots \\ \zeta_{8it} \end{bmatrix} \sim MN(\mathbf{0}, \mathbf{\Theta}^*)$$

Hence, we estimate $8\times8=64$ lagged parameters, and $8\times9/2=36$ variances and covariances at the within-person level.

Between level: Fixed and random effects

$$\begin{bmatrix} \mu_{1i} \\ \mu_{2i} \\ \dots \\ \mu_{8i} \end{bmatrix} \sim MN(\boldsymbol{\gamma}, \boldsymbol{\Psi})$$

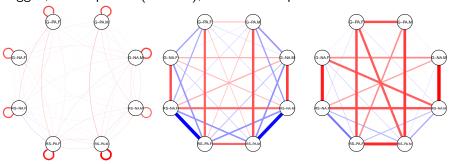
Hence, we estimate 8 grand means, and $8 \times 9/2 = 36$ variances and covariances at the between-person level. In total: 144 parameters.

Mplus input for multilevel VAR(1)

```
VARIABLE:
```

```
names = dyad day
           GPAM GNAM RSPAM RSNAM
           GPAF GNAF RSPAF RSNAF
           RelSat1M RelSat1F
           RelSat2M RelSat2F
           BrUpM BrUpF;
usevar = GPAM-RSNAF;
lagged = GPAM-RSNAF(1);
cluster = dyad;
missing = all(999);
ANALYSIS: TYPE IS TWOLEVEL; estimator = bayes;
           proc = 2; biter = (5000); bseed = 574;
MODEL:
   %WTTHTN%
   GPAM-RSNAF ON GPAM&1-RSNAF&1;
   GPAM-RSNAF WITH GPAM-RSNAF;
   SBETWEENS
   GPAM-RSNAF WITH GPAM-RSNAF:
```

Three networks



Lagged, within-person (residual), and between-person networks:

Note:

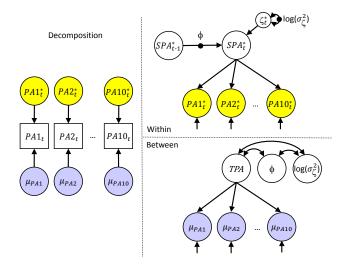
- the lagged network is based on the within-person standardized lagged relationships
- the within-person residual network is based on within-person correlated residuals
- the between-person network is based on the correlated within-person means

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Application 3: Dyadic daily diary data
- Application 4: Latent AR(1) model
- Discussion

Multilevel AR factor model

Using the 10 indicators of PA from the COGITO study, we can specify a multilevel factor model:



Multilevel latent AR(1) model

Decomposition

$$\mathbf{y}_{it} = \boldsymbol{\mu}_i + \mathbf{y}_{it}^*$$

Within level: State positive affect

$$\mathbf{y}_{it}^* = \mathbf{\Lambda}^* SPA_{it}^* + \boldsymbol{\epsilon}_i^* \qquad \quad \boldsymbol{\epsilon}_i^* \sim MN(\mathbf{0}, \boldsymbol{\Theta})$$

$$SPA_{it}^* = \phi_i SPA_{i,t-1}^* + \zeta_{it}^* \qquad \zeta_{it}^* \sim N(0, \sigma_{\zeta,i}^2)$$

Between level: Trait positive affect

$$\boldsymbol{\mu}_i = \boldsymbol{\nu} + \boldsymbol{\Lambda} TPA_i + \boldsymbol{\epsilon}_i$$

$$\begin{bmatrix} TPA_i \\ \phi_i \\ log(\sigma_{\zeta,i}^2) \end{bmatrix} = \begin{bmatrix} \gamma_{TPA} \\ \gamma_{\phi} \\ \gamma_{logVar} \end{bmatrix} + \begin{bmatrix} u_{TPA,i} \\ u_{\phi,i} \\ u_{logVar,i} \end{bmatrix}$$

Mplus input latent AR(1) model

VARIABLE :								
names	= ID sessdate nal na2 na3 na4 na5 na6 na7 na8 na9 na10 pa1 pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10 sessionNr ace pre sex CESDpre CESDpost dayNA dayPA older;							
cluster	= ID;							
usevar	= pa1-pa10 sessdate;							
	<pre>= sessdate(1);</pre>							
missing	= all(-999);							
ANALYSIS:	TYPE IS TWOLEVEL RANDOM; estimator=bayes; proc = 2; biter = (5000); bseed = 297; thin = 10;							
SPA BY SPA BY phi S	MODEL: %WITHIN% SPA BY pa1-pa10 (&1); ! FACTOR MODEL WITHIN SPA BY pa2-pa10 (LW2-LW10); ! GIVE LABELS phi SPA ON SPA&1; ! LATENT AR(1) logVZ SPA; ! RANDOM INN VAR							
<pre>%BETWEE</pre>	N8							
	pa1-pa10 (LB1-LB10); ! FACTOR MODEL BETWEEN H phi; TPA phi WITH logVZ;							
IFA WII	h phi, iff phi with logvz,							
new (di new (di new (di	<pre>onstraint: ! COMPARE FACTOR LOADINGS f12); difL2=LB2-LW2; fL3); difL4=LB4-LW4;</pre>							
	fL5); difL5=LB5-LW5;							
	fL6); difL6=LB6-LW6;							
	fL7); difL7=LB7-LW7;							
	fL8); difL8=LB8-LW8;							
	fL9); difL9=LB9-LW9; fL10); difL10=LB10-LW10;							
new (di	TTTO); (TTTTTO-TPTO-TMTO)							

OUTPUT: TECH1 TECH8 STDYX;

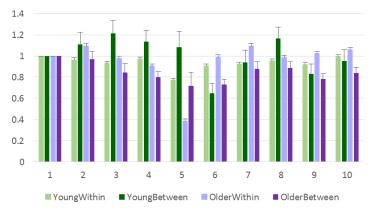
Mplus output: Comparing factor loadings across levels

New/Additional	Parameters					
DIFL2	-0.106	0.076	0.090	-0.242	0.060	
DIFL3	-0.118	0.089	0.101	-0.277	0.069	
DIFL4	-0.095	0.060	0.077	-0.199	0.037	
DIFL5	0.361	0.129	0.002	0.117	0.621	*
DIFL6	-0.246	0.057	0.001	-0.346	-0.121	*
DIFL7	-0.202	0.076	0.009	-0.334	-0.037	*
DIFL8	-0.080	0.061	0.107	-0.187	0.053	
DIFL9	-0.223	0.054	0.000	-0.315	-0.101	*
DIFL10	-0.199	0.060	0.003	-0.305	-0.066	*

Conclusion: 5 out of 10 factor loadings show evidence for being different across levels.

Factor loadings within-between for young-older

Factor loadings within and between for Young and Older



PA5 is the item "stolz"

Other items: 1) enthusiastic; 2) excited; 3) strong; 4) interested; 5) proud; 6) alert; 7) inspired; 8) determined; 9) attentive; 10) active

$\underset{\text{\tiny R-square}}{\text{Mplus output: R-square}}$

Within-Level R-Square Averaged Across Clusters

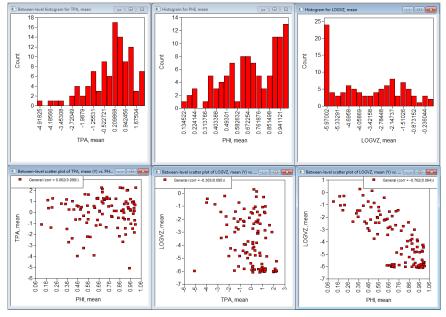
		Posterior	One-Tailed	95%	с.і.
Variable	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%
PA1	0.291	0.009	0.000	0.273	0.310
PA2	0.314	0.010	0.000	0.293	0.333
PA3	0.252	0.010	0.000	0.233	0.272
PA4	0.302	0.010	0.000	0.282	0.323
PA5	0.057	0.007	0.000	0.045	0.071
PA6	0.305	0.010	0.000	0.285	0.325
PA7	0.260	0.010	0.000	0.241	0.282
PA8	0.273	0.010	0.000	0.254	0.294
PA9	0.366	0.010	0.000	0.346	0.386
PA10	0.339	0.010	0.000	0.319	0.360
[]					
SPA	0.549	0.012	0.000	0.525	0.573
Between Level					
[]					
PA1	0.767	0.045	0.000	0.664	0.843
PA2	0.844	0.031	0.000	0.775	0.895
PA3	0.614	0.064	0.000	0.474	0.728
PA4	0.876	0.025	0.000	0.819	0.916
PA5	0.295	0.077	0.000	0.149	0.450
PA6	0.872	0.027	0.000	0.811	0.914
PA7	0.835	0.033	0.000	0.757	0.889
PA8	0.947	0.013	0.000		0.966
PA9	0.975	0.008	0.000	0.957	0.986
PA10	0.935	0.015	0.000	0.900	0.958

Mplus output: Correlations at between level

STDYX Standardization

	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
Between Level []						
TPA WITH PHI LOGVZ	0.067 -0.303	0.110 0.096	0.263	-0.146 -0.473	0.285 -0.100	*
PHI WITH LOGVZ	-0.728	0.063	0.000	-0.828	-0.584	*

Mplus output: Between-level plots



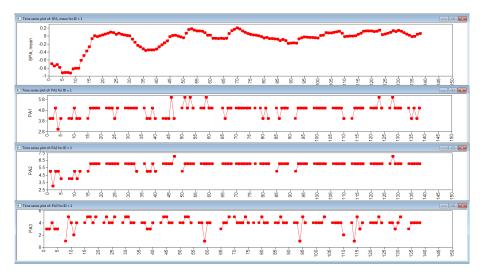
Mplus output: Estimated factor scores for ϕ_i

Using the statement: OUTPUT: TECH1 TECH8 STDYX FSCOMPARISON; PLOT: TYPE = PLOT3; FACTOR = ALL(1000);

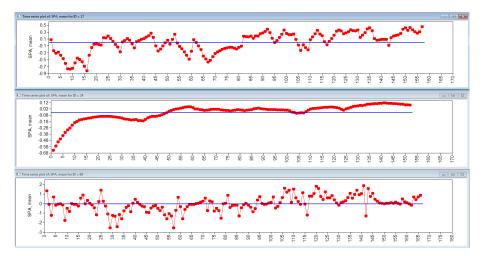
Results for Factor PHI

Ranking	Cluster	Factor Score	Ranking	Cluster	Factor Score	Ranking	Cluster	Factor Score
1	144	1.000	2	99	0.999	3	193	0.996
4	156	0.994	5	132	0.989	6	151	0.989
7	166	0.988	8	181	0.985	9	90	0.981
10	53	0.979	11	87	0.969	12	112	0.968
13	168	0.966	14	39	0.965	15	6	0.958
16	157	0.949	17	94	0.942	18	58	0.941
19	190	0.938	20	171	0.936	21	9	0.931
22	142	0.926	23	163	0.924	24	1	0.904
25	113	0.903	26	198	0.903	27	57	0.896
28	170	0.894	29	92	0.890	30	24	0.886
31	66	0.885	32	65	0.882	33	118	0.878
34	108	0.877	35	40	0.874	36	59	0.839
37	150	0.839	38	33	0.838	39	96	0.823
40	199	0.820	41	47	0.813	42	54	0.808
43	37	0.802	44	17	0.790	45	51	0.776
46	133	0.775	47	200	0.755	48	127	0.739
49	78	0.738	50	74	0.729	51	195	0.725
52	203	0.722	53	146	0.719	54	97	0.713
55	61	0.705	56	184	0.705	57	38	0.700

Estimated factor scores for SPA and observed scores



Estimated factor scores for 3 individuals



Multilevel latent AR(2) model

We can specify a multilevel autoregressive model of second order:

Decomposition

$$\mathbf{y}_{it} = \boldsymbol{\mu}_i + \mathbf{y}_{it}^*$$

Within level:

$$\mathbf{y}_{it}^* = \mathbf{\Lambda}^* P A_{it}^* + \boldsymbol{\epsilon}_i^*$$

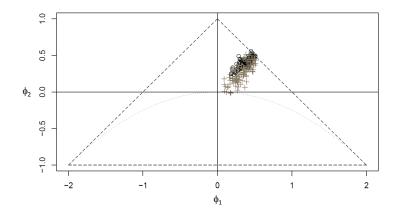
$$PA_{it}^* = \phi_{1i} PA_{i,t-1}^* + \phi_{2i} PA_{i,t-2}^* + \zeta_{it}^*$$

Between level:

 $\boldsymbol{\mu}_i = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{P} \boldsymbol{A}_i + \boldsymbol{\epsilon}_i$

$$\begin{bmatrix} \eta_i \\ \phi_{1i} \\ \phi_{2i} \\ log(\sigma_{\zeta}^2) \end{bmatrix} = \begin{bmatrix} \gamma_\eta \\ \gamma_{\phi 1} \\ \gamma_{\phi 2} \\ \gamma_{logVar} \end{bmatrix} + \begin{bmatrix} u_{\eta,i} \\ u_{\phi 1,i} \\ u_{\phi 2,i} \\ u_{logVar,i} \end{bmatrix}$$

Autoregressive parameters



How about modeling a linear trend?

If we include **time as a within level predictor** in a multilevel AR model, we can do this in two ways:

Within level with time: Time has indirect effects

$$PA_{it}^* = \alpha_i time_{it} + \phi_{1i} PA_{i,t-1}^* + \zeta_{it}^*$$

where α_i is hard to interpret.

Within level with time: Trend with AR(1) residuals

$$PA_{it}^{*} = \beta_{i} time_{it} + a_{it}^{*} a_{it}^{*} = \phi_{1i}a_{i,t-1}^{*} + \zeta_{it}^{*}$$

where β_i is the slope of the linear trend in the process.

The two specifications are related (see Hamaker, 2005):

• ϕ_i will be (almost) identical

•
$$\beta_i = \frac{\alpha_i}{1 - \phi_i}$$

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Application 3: Dyadic daily diary data
- Application 4: Latent AR(1) model
- Discussion

There is more...

DSEM in Mplus also allows for **cross-classified models**: observations are nested **in persons** AND **in occasions**.

Hence, you can have:

- mean for each person (μ_i, average score over time); these means have a distribution at the between-person level
- mean for each time point (µ_t, average score across people); these means have a distribution at the between-occasion level

You can also have:

- **person-specific regression coefficients** (e.g., β_i), that have distributions at the between-person level
- time-specific regression coefficients (e.g., β_t), that have distributions at the between-occasion level

Input of a cross-classified model

```
VARTABLE:
names = dyad day
GPAM GNAM RSPAM RSNAM GPAF GNAF RSPAF RSNAF
RelSat1M RelSat1F RelSat2M RelSat2F BrUpM BrUpF;
usevar = GPAM;
lagged = GPAM(1);
cluster = dyad day;
missing = all(999);
ANALYSIS: TYPE IS CROSS RANDOM;
           estimator = bayes; proc = 2;
           biter = (3000); bseed = 1574;
MODEL:
   %WITHIN%
   phi | GPAM ON GPAM&1;
   %BETWEEN dyad%
   phi WITH GPAM;
   %BETWEEN day%
   GPAM:
   phi@0;
```

Cross-classified models

This approach is useful when:

- time is meaningful (e.g., days since quite smoking; trial since the beginning)
- you **expect a trend** (in mean or in regression coefficient), which may be in the same direction for most participants

Using the cross-classified part allows you to **explore the shape of the trend over time**.

Can be thought of as an **alternative** to the **TVEM** (time varying effect modeling) and **TVAR** (time varying autoregressive modeling).

But it requires:

- longer time series (especially for random autoregressions; e.g., T>200)
- observations from multiple individuals per time point

And more...

TITLE:	this is an example of a two-level time series analysis with a first-order autoregressive AR(1) IRT model for binary factor indicators with random thresholds, a random AR(1) slope, and a random residual variance
DATA:	FILE = ex9.35part2.dat;
	NAMES = u1-u4 subject;
	CATEGORICAL = u1-u4;
	CLUSTER = subject;
ANALYSIS:	TYPE = TWOLEVEL RANDOM;
	ESTIMATOR = BAYES;
	PROCESSORS = 2; BITERATIONS = (3000);
MODEL:	SUIERATIONS - (SUUD); %WITHIN%
110000.	f BY ul-u4*(&1 1-4);
	s f ON f&1;
	logvf f;
	%BETWEEN%
	fb BY u1-u4* (1-4);
	[logvf@0];
	fb s logvf WITH fb s logvf;
OUTPUT:	TECH1 TECH8;

And there will be more...

Mplus v8.1 (or v8.2?) will also allow for N=1 and multilevel regime-switching models.

Features of N=1 regime-switching models (see Kim and Nelson, 1990):

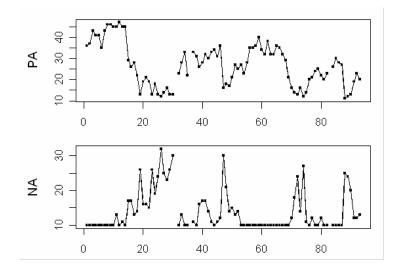
- two or more discrete states (or regimes)
- switching between these states is a hidden Markov process
- each state is characterized by its own process: different means, autoregression, cross-lagged regressions, etc.

Features of multilevel regime-switching models:

- switching probabilities can be random across individuals
- state-specific parameters can be random across individuals

Example: Bipolar disorder

Bipolar disorder is characterized by severe changes in affect and activity: Bipolar patients suffer from **manic** and **depressed episodes**.



Discussion: Model evaluation

Model fit and model comparison are unresolved issues at this point.

Model fit: Should we focus on explained variance, covariance, or lagged structure?

Model comparison:

- DIC is highly unreliable (check using different seeds!)
- DIC is not always comparable (see Celeux et al.)
- Bayes factors don't go well with uninformative priors

Discussion

Venues for future research:

- samples sizes (both N and T) and number of parameters
- trends: to detrend or not to detrend?
- distributions: how normal is normal?
- model comparison
- model fit

References

- Asparouhov, Hamaker & Muthén (2017). Dynamic latent class analysis. *Structural Equation Modeling: A Multidisciplinary Journal, 24*, 257-269.
- Asparouhov, Hamaker & Muthén (in preparation). Dynamic structural equation models.
- Hamaker (2012). Why researchers should think "within-person": A paradigmatic rationale. In M. R. Mehl & T. S. Conner (Eds.). *Handbook of Research Methods for Studying Daily Life*, 43-61. New York, NY: Guilford Publications.
- Hamaker, Asparouhov, Brose, Schmiedek & Muthén (submitted). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. *Multivariate Behavioral Research*.
- Hamaker & Grasman (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. *Frontiers in Psychology*, *5*, 1492.
- Hamaker & Wichers (2017). No time like the present: Discovering the hidden dynamics in intensive longitudinal data. *Current Directions in Psychological Science*, *26*, 10-15.
- Jongerling, Laurenceau & Hamaker (2015). A multilevel AR(1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. *Multivariate Behavioral Research, 50*, 334-349.
- Schuurman, Ferrer, de Boer-Sonnenschein & Hamaker (2016). How to compare cross-lagged associations in a multilevel autoregressive model. *Psychological Methods*, *21*, 206-221.

References and suggested readings

- Kim, C-J, and Nelson, C. R. (1999). *State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications.* Cambridge, MA: The MIT Press.
- Raudenbush S.W. & Bryk, A.S. (2002). *Hierarchical linear models: Applications and data analysis methods (Second Edition)*. Thousand Oaks, CA: Sage Publications.
- Rosmalen, Wenting, Roest, de Jonge & Bos (2012). Revealing causal heterogeneity using time series analysis of ambulatory assessments: Application to the association between depression and physical activity after myocardial infarction. *Psychosomatic Medicine*, 74, 377-389.
- Snippe, Bos, van der Ploeg, Sanderman, Fleer & Schroevers (2014). Time-series analysis
 of daily changed in mindfulness, repetitive thinking, and depressive symptoms during
 mindfulness-based treatment. *Mindfulness*, doi:10.1007/s12671-014-0354-7.
- van Gils, Burton, Bos, Janssens, Schoevers, & Rosmalen (2014). Individual variation in temporal relationships between stress and functional somatic symptoms. *Journal of Psychosomatic Research*, 77(1), 34-39.