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Cross-sectional research: N is large, T=1
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Cross-sectional research: A single snapshot
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Cross-sectional research: A single snapshot
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Cattell’s data box
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Panel research: N is large, T is small
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Panel research: A few snapshots
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Cattell’s data box

va
ri

ab
le

s 

9 / 120



Time series data: N=1 and T is large
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Time series analysis: Many snapshots
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Pioneers of idiographic research in psychology
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Idiographic (N=1) research in psychology

N=1 research has included:
• Cattell’s P-technique: factor analysis of N=1 data
• Dynamic factor analysis: considering lagged relationships
• Measurement burst design: multiple waves of intensive measurements
• Intervention research: ABAB design etc.

Critique of this kind of research:
• within-person fluctuations are just noise
• results are not generalizable
• no one has these data
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New technology

Secure continuous remote 
alcohol monitor (SCRAM)  

Activity trackers 

Smart glasses 

Smart phones 

Smart watches 
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Intensive longitudinal data

Different forms of intensive longitudinal data:
• daily diary (DD); self-report end-of-day
• experience sampling method (ESM); self-report of subjective experience
• ecological momentary assessment (EMA); healthcare related self-report
• ambulatory assessment (AA); physiological measurements
• event-based measurements; self-report after a particular event
• observational measurements; expert rater

For more info on methodology, check out:
• Seminar of Tamlin Conner and Joshua Smyth on YouTube

(https://www.youtube.com/watch?v=nQBBVp9vBIQ)
• Society for Ambulatory Assessment (http://www.saa2009.org/)
• Life Data (https://www.lifedatacorp.com/)
• Quantified Self (http://quantifiedself.com/)
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Characteristics of these kind of data

Data structure:
• one or more measurements per day
• typically for multiple days
• sometimes multiple waves (i.e., Nesselroade’s measurement-burst design)

Advantages of ESM, EMA and AA
• no recall bias
• high ecological validity
• physiological measures over a large time span
• monitoring of symptoms and behavior, with new possibilities for feedback and

intervention (e-Health and m-Health)
• window into the dynamics of processes
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A paradigm shift

 

Taken from Hamaker and Wichers (2017)
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Application 3: Dyadic daily diary data
• Application 4: Latent AR(1) model
• Discussion

18 / 120



What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics,
seismology, meteorology, control engineering, and signal processing.

Main characteristics:
• N=1 technique
• T is large (say >50)
• concerned with trends, cycles and autocorrelation structure (i.e., serial

dependency)
• goal: forecasting (6= prediction)
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Partial autocorrelation function (PACF)

Partial autocorrelation at lag k: The correlation between yt and yt−k
after removing the effect of the intermediate observations (i.e., yt−1
to yt−k+1).
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Sequence, ACF and PACF
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Application 3: Dyadic daily diary data
• Application 4: Latent AR(1) model
• Discussion
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A fundamental problem in a nutshell
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Taken from Hamaker (2012).
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Three perspectives on data
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Taken from Hamaker (2012).
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Between-person differences in within-person slopes
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Taken from Hamaker and Grasman (2014).

In conclusion: To study within-person processes we need
• (intensive) longitudinal data
• to decompose observed variance into within and between
• to consider individual differences in within-person dynamics
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive
symptomatology

• Application 2: Intervention study with ESM
• Application 3: Dyadic daily diary data
• Application 4: Latent AR(1) model
• Discussion
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Data: Daily measurements affect

Data come from the COGITO study of the MPI in Berlin; goal is to
study aging using a younger and older sample.

Analyses here are based on Hamaker et al. (in preparation).

Characteristics of the younger and older sample:
• aged 20-31; aged 65-80
• 101 individuals; 103 individuals
• about 100 daily measurements of positive affect (PA) and negative
affect (NA)
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Decomposition

Decomposition into a between part and a within part
PAit = µPA,i + PA∗

it
NAit = µNA,i + NA∗

it

where
• µPA,i and µNA,i are the individual’s means on PA and NA (i.e., baseline, trait, or

equilibrium scores) ⇒ between-person part
• PA∗

it and NA∗
it are the within-person centered (cluster-mean centered) scores ⇒

within-person part
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Total, between-, and within-person variance
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Bivariate model: Multilevel vector AR(1) model
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Within-person level model
Lagged within-person model:

PA∗
it = φPP,iPA∗

i,t−1 + φPN ,iNA∗
i,t−1 + ζPA,it

NA∗
it = φNN ,iNA∗

i,t−1 + φNP,iPA∗
i,t−1 + ζNA,it

where
• φPP,i is the autoregressive parameter for PA (i.e., inertia, carry-over)
• φNN,i is the autoregressive parameter for NA (i.e., inertia, carry-over)
• φPN,i is the cross-lagged parameter for NA to PA (i.e., spill-over)
• φNP,i is the cross-lagged parameter for PA to NA (i.e., spill-over)
• ζPA,it is the innovation for PA (residual, disturbance, dynamic error)
• ζNA,it is the innovation for NA (residual, disturbance, dynamic error)

Parameters estimated at this level are the residual variances and
covariance: [

ζPA,it
ζNA,it

]
∼ MN

[[
0
0

]
,

[
θ11
θ21 θ22

]]
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Autoregressive parameter (also known as inertia)
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The AR parameter indicates how quickly a person recovers after being
perturbed.
Affective inertia has been empirically related to

• neuroticism (+) and agreeableness (-) (Suls, Green & Hillis, 1998)
• concurrent depression (+) (Kuppens, Allen & Sheeber, 2010)
• future depression (+) (Kuppens, Sheeber, Yap, Whittle, Simmons & Allen, 2012)
• rumination (+) (Koval, Kuppens, Allen & Sheeber, 2012)
• self-esteem (-) (Houben, Van den Noortgate & Kuppens, 20150)
• life-satisfaction (-) (Houben et al., 2015)
• PA (-) and NA (+) (Houben et al., 2015)

33 / 120



Between-person level model
Between level: fixed and random effects

µPA,i
µNA,i
φPP,i
φPN ,i
φNP,i
φNN ,i


=



γP
γN
γPP
γPN
γNP
γNN


+



uP,i
uN ,i
uPP,i
uPN ,i
uNP,i
uNN ,i


ui ∼ MN (0,Ψ)

Where:
• γP to γNN ⇒ fixed effects
• uP,i to uNN,i ⇒ random effects

Parameters estimated at this level are:
• 6 fixed effects (i.e., γ’s)
• 6 variances for random effects (i.e., diagonal elements of Ψ)
• 15 covariances between the random effects (i.e., off-diagonal elements in Ψ)
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Bivariate model: Mplus code
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Mplus results: Within-person (younger sample)
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Mplus results: Between-person (younger sample)
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Comparing cross-lagged parameters

Standardization in multilevel models is a tricky issue.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four
forms of standardization in multilevel models, using:

• total variance (i.e., grand standardization)
• between-person variance (i.e., between standardization)
• average within-person variance
• within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it parallels standardizing
when N=1.

Standardized fixed effect should be the average standardized
within-person effect.
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Mplus standardized results (younger sample)
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Mplus standardized results (younger sample)
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Between-person level: Correlated random effects

To represent the correlation matrices of the 6 random effects in each
group, we can use the network representation (with qgraph from Sacha
Epskamp in R):
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Including level 2 predictor and outcome
Depression was measured prior to the ILD phase and afterwards, using the
CESD; we include these measures at the between-person level as a
predictor and an outcome.

Between level: Including a level 2 predictor
µPA,i = γ00 + γ01CESDprei + u0i
µNA,i = γ10 + γ11CESDprei + u1i
φPP,i = γ20 + γ21CESDprei + u2i
φPN ,i = γ30 + γ31CESDprei + u3i
φNN ,i = γ40 + γ41CESDprei + u4i
φNP,i = γ50 + γ51CESDprei + u5i

Between level: Including a level 2 outcome
CESDposti = γ60 + γ61CESDprei + γ62µPA,i + γ63µNA,i

+γ64φPP,i + γ65φPN ,i + γ66φNN ,i + γ67φNP,i + u6i
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Dynamic mediation model

𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 

𝜙𝜙𝑃𝑃𝑃𝑃 𝜙𝜙𝑃𝑃𝑃𝑃 𝜙𝜙𝑁𝑁𝑁𝑁 𝜙𝜙𝑁𝑁𝑁𝑁 𝜇𝜇𝑃𝑃𝑃𝑃 𝜇𝜇𝑁𝑁𝑁𝑁 
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Mplus input mediation model
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Mplus input mediation model

Note that the default here is that the residuals are not correlated.
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Mplus output mediation model (younger sample)
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Mplus output mediation model (older sample)
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Random variance (cf. Jongerling et al., 2015)

Within level: AR(1) with random φi

NA∗
it = φiNA∗

i,t−1 + ζit ζit ∼ N (0, σ2)

Where ζ is the innovation, consisting of:
• external influences
• reactivity to external influences

Reasons to assume individual differences for σ2:
• individuals may differ with respect to the variability in exposure to external factors
• individuals may differ with respect to their reactivity to external influences (see

reward experience and stress sensitivity research)

Hence, we allow for a random innovation variance using a log normal
distribution.
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Random innovation variance: Univariate model
Within level: AR(1) with random φi

NA∗
it = φiNA∗

i,t−1 + ζit ζit ∼ N (0, σ2
i )

Between level: fixed and random effects

µi = γµ + u0i
φi = γφ + u1i

log(σ2
i ) = γlog(σ2) + u2i

u0i
u1i
u2i

 ∼ MN


0

0
0

 ,
ψ11
ψ21 ψ22
ψ31 ψ32 ψ33



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Bivariate model: Random innovation variance
In the bivariate case, we want random innovation variances AND
random innovation covariance.

The latter is modeled with an additional factor ηt :
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Where:
• -ηt is the shared part (we assume a negative covariance)
• ePA,t and eNA,t are the unique parts
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Mplus code
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Mplus results (younger sample)
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Correlated random effects (before and now)
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Mediation model with random innovation variances
and covariance
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Mplus results
Effect Younger Older
direct 0.290 [ 0.062,0.522] 0.585 [ 0.076,1.206]
mediated by µPA 0.058 [-0.011,0.154] 0.054 [-0.018,0.147]
mediated by µNA 0.024 [-0.062,0.130] 0.011 [-0.022,0.070]
mediated by φPP 0.003 [-0.032,0.050] 0.003 [-0.020,0.043]
mediated by φPN 0.000 [-0.053,0.061] -0.003 [-0.106,0.097]
mediated by φNP -0.019 [-0.178,0.087] -0.048 [-0.691,0.470]
mediated by φNN 0.127 [ 0.036,0.258] -0.011 [-0.069,0.020]
mediated by log(σ2

eP) 0.000 [-0.059,0.055] -0.046 [-0.127,0.007]
mediated by log(σ2

eN ) -0.009 [-0.103,0.076] 0.079 [-0.015,0.212]
mediated by log(−σ) 0.072 [ 0.004,0.185] 0.029 [-0.035,0.122]

Hence:
• higher CESDpre is associated with higher CESDpost (both samples)
• higher CESDpre predicts more carry-over in NA, which subsequently
predicts higher CESDpost (younger sample)

• higher CESDpre predicts higher log(−σ), which subsequently predicts
higher CESDpost (younger sample)
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Mediation through the random common variance

For the younger sample we have:

Considering three levels of CESDpre (SD of CESDpre is 0.35):
• +2SD CESDpre: log(−σ) = −2.69 → −σ = 0.07 → σ = −0.07
• ±0SD CESDpre: log(−σ) = −3.39 → −σ = 0.03 → σ = −0.03
• -2SD CESDpre: log(−σ) = 4.09 → −σ = 0.02 → σ = −0.02

Conclusion: Higher CESDpre is associated with more negative common
variance (i.e., covariance).
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Results younger sample
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Results younger sample (continued)
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Results older sample
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Results older sample (continued)
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Advantages of using DSEM in Mplus (thus far)
Compared to standard multilevel software:

• multiple outcome variables (with correlated residuals)
• outcomes at between-person level
• person-mean centering integral part of model estimation
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Advantages of using DSEM in Mplus

All the models ran here, could also be estimated using other Bayesian
software (e.g., WinBUGS, jags, and stan).

In comparison, the advantages of Mplus are:
• easy to use due to tailor-made code
• default uninformative priors for parameters (even for small variances)
• fast (which makes a difference in case of Bayes)

Other recent developments:
• ctsem in R: Allows for continuous time modeling
• open Mx in R
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Application 3: Dyadic daily diary data
• Application 4: Latent AR(1) model
• Discussion
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Intervention study with ESM

When ESM is used in a randomized controlled trial, we can investigate
whether treatment affects:

• means
• dynamics (e.g., autoregression)
• variability

Here we use data from individuals with a history of depression and
current residual depressive symptoms (Geschwind et al., 2011).

Each ESM period consisted of 6 days, 10 beeps per day.

We analyze data from 117 participants; 56 received a mindfulness
training between the two phases, and 61 served as controls.
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Treatment effect on the within-person mean

We use NA1it and NA2it as two separate variables!

Decomposition into a between part and a within part
Pre-treatment phase: NA1it = µ1i + NA∗

1it
Post-treatment phase: NA2it = µ2i + NA∗

2it

Between level
µ1i = γ00 + γ01Groupi + u1i
µ2i = γ10 + µ1i + γ11Groupi + u2i

• γ01 is the initial difference between the groups
• γ10 is the effect of time
• γ11 is the effect of treatment

Note: µ2i − µ1i = γ10 + γ11Groupi + u2i .
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Mplus input

Note: When NA1it is observed, NA2it is missing, and vice versa; hence, we
fix their within-person covariance to zero.

66 / 120



Mplus results
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Treatment effect on autoregression
Within level: AR(1) processes

Pre-treatment phase: NA∗
1it = φ1iNA∗

1it + ζ1it
Post-treatment phase: NA∗

2it = φ2iNA∗
2it + ζ2it

Between level: Pre-treatment phase
µ1i = γ00 + γ01Groupi + u0i
φ1i = γ10 + γ11Groupi + u1i

We expect γ01 and γ11 to be zero.

Between level: Post-treatment phase
µ2i = γ20 + µ1i + γ21Groupi + u2i
φ2i = γ30 + φ1i + γ31Groupi + u3i

Where: γ20 and γ30 represent the effects of time and: γ21 and γ31
represent the effects of treatment
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Mplus results (all effects random)
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Mplus results (with fixed change in φ)
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Including a level 1 predictor

Let UnPl1it and UnPl2it be variables for phases 1 and 2, that indicate
whether something emotionally charged happened since the previous beep
(positive scores is Pleasant event, negative score is Unpleasant event).

Within level
Pre-treatment phase: NA∗

1it = φ1iNA∗
1it + β1iUnPl∗

1it + ζ1it
Post-treatment phase: NA∗

2it = φ2iNA∗
2it + β2iUnPl∗

2it + ζ2it

where:
• φ1i and φ2i represent carry-over
• β1i and β2i represent reactivity/sensitivity
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Including a level 1 predictor
At between level we include Group as predictor for pre-treatment phase:
Between level: Pre-treatment phase

µ1i = γ00 + γ01Groupi + u0i
φ1i = γ10 + γ11Groupi + u1i
β1i = γ20 + γ21Groupi + u2i

where γ00, γ10, and γ20 are expected to be zero.

For the post-treatment phase, we model the change in mean, carry-over,
and reactivity:
Between level: Post-treatment phase

µ2i = γ40 + µ1i + γ41Groupi + u4i
φ2i = γ50 + φ1i + γ51Groupi + u5i
β2i = γ60 + β1i + γ61Groupi + u6i

where
• γ40, γ50, and γ60 represent change due to time
• γ41, γ51, and γ61 represent treatment effect 72 / 120



Mplus input: Centering within predictors
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Mplus input: Within and between model

Note: The within-person predictor has missings; by asking for the
variances, Mplus treats it as a y-variable, which is allowed to have missings.
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Mplus output: Regressions at Between level

Group only has an effect on the change in the mean (i.e., µ2i − µ1i).
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Mplus output: Intercepts and random effects

Conclusion:

• means of µ1i , φ1i , and β1i deviate from zero
• no change due to time (intercepts for µ2i , φ2i , and β2i are zero)
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Including a level 2 predictor

Let Ham1i and Ham2i be depression scores for phases 1 and 2; these were
obtained with the Hamilton depression scale prior to each ESM episode.

Within level
Pre-treatment phase: NA∗

1it = φ1iNA∗
1it + β1iUnPl∗

1it + ζ1it
Post-treatment phase: NA∗

2it = φ2iNA∗
2it + β2iUnPl∗

2it + ζ2it

where:
• φ1i and φ2i represent carry-over
• β1i and β2i represent reactivity/sensitivity
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Including a level 2 predictor (pre-treatment)

At between level we include Group as predictor for pre-treatment phase:

Between level: Pre-treatment phase
µ1i = γ00 + γ01Groupi + γ02Ham1i + u0i
φ1i = γ10 + γ11Groupi + γ12Ham1i + u1i
β1i = γ20 + γ21Groupi + γ22Ham1i + u2i

Ham1i = γ30 + γ31Groupi + u3i

where
• γ01, γ11, γ21, and γ31 are expected to be zero
• γ02 is expected to be positive
• γ12 is expected to be positive
• γ22 is expected to be non-zero
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Including a level 2 predictor (post-treatment)
For the post-treatment phase, we model the change in mean, carry-over,
reactivity, and depression score:

Between level: Post-treatment phase
µ2i = γ50 + µ1i + γ51Groupi + γ52Ham2i + u5i
φ2i = γ60 + φ1i + γ61Groupi + γ62Ham2i + u6i
β2i = γ70 + β1i + γ71Groupi + γ72Ham2i + u7i

Ham2i = γ80 + Hami1 + γ81Groupi + u8i

where
• γ50, γ60, γ70, and γ80 represent change due to time
• γ51, γ61, γ71, and γ81 represent direct treatment effect
• γ52, γ62, and γ72 represent change predicted by depression score
• γ81 ∗ γ52 treatment effect on change in mean mediated through depression
• γ81 ∗ γ62 treatment effect on change in carry-over mediated through depression
• γ81 ∗ γ72 treatment effect on change in reactivity mediated through depression
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Mediation of Group
Between level: Post-treatment phase

µ2i = γ50 + µ1i + γ51Groupi + γ52Ham2i + u5i
φ2i = γ60 + φ1i + γ61Groupi + γ62Ham2i + u6i
β2i = γ70 + β1i + γ71Groupi + γ72Ham2i + u7i

Ham2i = γ80 + Hami1 + γ81Groupi + u8i

Group has a direct effect on the random effects (i.e., µ2i , φ2i , and β2i):
• γ51

• γ61

• γ71

Group also has an indirect effect through Ham2i :
• on µ2i : γ81 × γ52

• on φ2i : γ81 × γ62

• on β2i : γ81 × γ72
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Mplus input
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Mplus output
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Mplus output
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Considerations about the level 2 predictors...

We just did a model with:

Between level: Post-treatment phase
µ2i = γ50 + µ1i + γ51Groupi + γ52Ham2i + u5i
φ2i = γ60 + φ1i + γ61Groupi + γ62Ham2i + u6i
β2i = γ70 + β1i + γ71Groupi + γ72Ham2i + u7i

Ham2i = γ80 + Hami1 + γ81Groupi + u8i

Instead, we could use ∆Hami = Ham2i − Ham1i , we get:

Between level: Post-treatment phase
µ2i = γ50 + µ1i + γ51Groupi + γ52∆Hami + u5i
φ2i = γ60 + φ1i + γ61Groupi + γ62∆Hami + u6i
β2i = γ70 + β1i + γ71Groupi + γ72∆Hami + u7i

∆Hami = γ80 + γ81Groupi + u8i
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Mplus input
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Mplus output
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Mplus output
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Application 3: Dyadic daily diary data
• Application 4: Latent AR(1) model
• Discussion
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General and relationship specific affect

Ferrer gathered daily diary data from couples regarding their:
• general positive affect that day (G-PA)
• general negative affect that day (G-NA)
• relationship specific positive affect that day (RS-PA)
• relationship specific negative affect that day (RS-NA)

Hence, for each of the 193 dyads there are 8 variables.
They were measured on 52-108 days.
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Mplus summary of the data
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Multilevel VAR(1)

Within level: Vector autoregressive model



GPAM∗
it

GNAM∗
it

RSPAM∗
it

RSNAM∗
it

GPAF∗
it

GNAF∗
it

RSPAF∗
it

RSNAF∗
it

 =



φ11 φ12 φ13 φ14 φ15 φ16 φ17 φ18
φ21 φ22 φ23 φ24 φ25 φ26 φ27 φ28
φ31 φ32 φ33 φ34 φ35 φ36 φ37 φ38
φ41 φ42 φ43 φ44 φ45 φ46 φ47 φ48
φ51 φ52 φ53 φ54 φ55 φ56 φ57 φ58
φ61 φ62 φ63 φ64 φ65 φ66 φ67 φ68
φ71 φ72 φ73 φ74 φ75 φ76 φ77 φ78
φ81 φ82 φ73 φ84 φ85 φ86 φ87 φ88





GPAM∗
it−1

GNAM∗
it−1

RSPAM∗
it−1

RSNAM∗
it−1

GPAF∗
it−1

GNAF∗
it−1

RSPAF∗
it−1

RSNAF∗
it−1


+



ζ1it
ζ2it
ζ3it
ζ4it
ζ5it
ζ6it
ζ7it
ζ8it



which gives:
GPAM ∗

it = φ11GPAM ∗
it−1 + φ12GNAM ∗

it−1 + φ13RSPAM ∗
it−1 + φ14RSNAM ∗

it−1 +
φ15GPAF∗

it−1 + φ16GNAF∗
it−1 + φ17RSPAF∗

it−1 + φ18RSNAF∗
it−1 + ζ1it

etc.
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Multilevel VAR(1)
Within level: Residual covariance matrix

ζ1it
ζ2it
. . .
ζ8it

 ∼ MN (0,Θ∗)

Hence, we estimate 8× 8 = 64 lagged parameters, and 8× 9/2 = 36 variances and
covariances at the within-person level.

Between level: Fixed and random effects
µ1i
µ2i
. . .
µ8i

 ∼ MN (γ,Ψ)

Hence, we estimate 8 grand means, and 8× 9/2 = 36 variances and covariances at the
between-person level. In total: 144 parameters.
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Mplus input for multilevel VAR(1)
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Three networks

Lagged, within-person (residual), and between-person networks:
G−PA.M

G−NA.M

RS−NA.M

RS−PA.MRS−PA.F

RS−NA.F

G−NA.F

G−PA.F G−PA.M

G−NA.M

RS−NA.M

RS−PA.MRS−PA.F

RS−NA.F

G−NA.F

G−PA.F G−PA.M

G−NA.M

RS−NA.M

RS−PA.MRS−PA.F

RS−NA.F

G−NA.F

G−PA.F

Note:
• the lagged network is based on the within-person standardized lagged relationships
• the within-person residual network is based on within-person correlated residuals
• the between-person network is based on the correlated within-person means
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Application 3: Dyadic daily diary data
• Application 4: Latent AR(1) model
• Discussion
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Multilevel AR factor model
Using the 10 indicators of PA from the COGITO study, we can specify a
multilevel factor model:

φ 

Within 

Between 
𝑃𝑃𝑃𝑃2𝑡𝑡 𝑃𝑃𝐴𝐴10𝑡𝑡 

𝑃𝑃𝑃𝑃2𝑡𝑡∗ 𝑃𝑃𝐴𝐴10𝑡𝑡∗ 

𝜇𝜇𝑃𝑃𝐴𝐴10 𝜇𝜇𝑃𝑃𝑃𝑃2 

Decomposition 

𝑃𝑃𝑃𝑃1𝑡𝑡 

𝑃𝑃𝑃𝑃1𝑡𝑡∗ 

𝜇𝜇𝑃𝑃𝑃𝑃1 

… 

𝜇𝜇𝑃𝑃𝐴𝐴10 𝜇𝜇𝑃𝑃𝑃𝑃2 𝜇𝜇𝑃𝑃𝑃𝑃1 … 

𝑃𝑃𝑃𝑃2𝑡𝑡∗ 𝑃𝑃𝐴𝐴10𝑡𝑡∗ 𝑃𝑃𝑃𝑃1𝑡𝑡∗ … 

𝑆𝑆𝑃𝑃𝑃𝑃𝑡𝑡∗ 

TPA 

𝑆𝑆𝑃𝑃𝑃𝑃𝑡𝑡-1
∗  

φ 
ζ𝑡𝑡∗ log(𝜎𝜎ζ

2) 

log(𝜎𝜎ζ
2) 
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Multilevel latent AR(1) model

Decomposition
yit = µi + y∗

it

Within level: State positive affect
y∗

it = Λ∗SPA∗
it + ε∗

i ε∗
i ∼ MN (0,Θ)

SPA∗
it = φiSPA∗

i,t−1 + ζ∗
it ζ∗

it ∼ N (0, σ2
ζ,i)

Between level: Trait positive affect
µi = ν + ΛTPAi + εi

[ TPAi
φi

log(σ2
ζ,i)

]
=

[
γTPA
γφ

γlogVar

]
+

[ uTPA,i
uφ,i

ulogVar,i

]
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Mplus input latent AR(1) model
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Mplus output: Comparing factor loadings across
levels

Conclusion: 5 out of 10 factor loadings show evidence for being different
across levels.
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Factor loadings within-between for young-older

PA5 is the item “stolz”
Other items: 1) enthusiastic; 2) excited; 3) strong; 4) interested; 5) proud; 6) alert; 7)
inspired; 8) determined; 9) attentive; 10) active
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Mplus output: R-square
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Mplus output: Correlations at between level
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Mplus output: Between-level plots
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Mplus output: Estimated factor scores for φi

Using the statement:
OUTPUT: TECH1 TECH8 STDYX FSCOMPARISON;
PLOT: TYPE = PLOT3; FACTOR = ALL(1000);
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Estimated factor scores for SPA and observed scores
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Estimated factor scores for 3 individuals
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Multilevel latent AR(2) model
We can specify a multilevel autoregressive model of second order:

Decomposition
yit = µi + y∗

it

Within level:
y∗

it = Λ∗PA∗
it + ε∗

i

PA∗
it = φ1iPA∗

i,t−1 + φ2iPA∗
i,t−2 + ζ∗

it

Between level:
µi = ν + ΛPAi + εi

 ηi
φ1i
φ2i

log(σ2
ζ)

 =

 γη
γφ1
γφ2

γlogVar

 +

 uη,i
uφ1,i
uφ2,i

ulogVar,i


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Autoregressive parameters

φ2 

φ1 
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How about modeling a linear trend?
If we include time as a within level predictor in a multilevel AR model,
we can do this in two ways:

Within level with time: Time has indirect effects
PA∗

it = αitimeit + φ1iPA∗
i,t−1 + ζ∗

it

where αi is hard to interpret.

Within level with time: Trend with AR(1) residuals
PA∗

it = βitimeit + a∗
it

a∗
it = φ1ia∗

i,t−1 + ζ∗
it

where βi is the slope of the linear trend in the process.

The two specifications are related (see Hamaker, 2005):
• φi will be (almost) identical
• βi = αi

1−φi
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Application 3: Dyadic daily diary data
• Application 4: Latent AR(1) model
• Discussion
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There is more...

DSEM in Mplus also allows for cross-classified models: observations are
nested in persons AND in occasions.

Hence, you can have:
• mean for each person (µi , average score over time); these means have a

distribution at the between-person level
• mean for each time point (µt , average score across people); these means have a

distribution at the between-occasion level

You can also have:
• person-specific regression coefficients (e.g., βi), that have distributions at the

between-person level
• time-specific regression coefficients (e.g., βt), that have distributions at the

between-occasion level
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Input of a cross-classified model
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Cross-classified models

This approach is useful when:
• time is meaningful (e.g., days since quite smoking; trial since the beginning)
• you expect a trend (in mean or in regression coefficient), which may be in the

same direction for most participants

Using the cross-classified part allows you to explore the shape of the
trend over time.

Can be thought of as an alternative to the TVEM (time varying effect
modeling) and TVAR (time varying autoregressive modeling).

But it requires:
• longer time series (especially for random autoregressions; e.g., T>200)
• observations from multiple individuals per time point
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And more...
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And there will be more...

Mplus v8.1 (or v8.2?) will also allow for N=1 and multilevel
regime-switching models.

Features of N=1 regime-switching models (see Kim and Nelson, 1990):
• two or more discrete states (or regimes)
• switching between these states is a hidden Markov process
• each state is characterized by its own process: different means, autoregression,

cross-lagged regressions, etc.

Features of multilevel regime-switching models:
• switching probabilities can be random across individuals
• state-specific parameters can be random across individuals
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Example: Bipolar disorder
Bipolar disorder is characterized by severe changes in affect and activity:
Bipolar patients suffer from manic and depressed episodes.
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Discussion: Model evaluation

Model fit and model comparison are unresolved issues at this point.

Model fit: Should we focus on explained variance, covariance, or lagged
structure?

Model comparison:
• DIC is highly unreliable (check using different seeds!)
• DIC is not always comparable (see Celeux et al.)
• Bayes factors don’t go well with uninformative priors
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Discussion

Venues for future research:
• samples sizes (both N and T ) and number of parameters
• trends: to detrend or not to detrend?
• distributions: how normal is normal?
• model comparison
• model fit
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